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Abstract
Background: Multiple rib fractures cause significant pain and potential for chest wall instability. Despite an emerging trend of surgical 
management of flail chest injuries, there are no studies examining the effect of rib fracture fixation on respiratory function.
Objectives: Using a novel full thorax human cadaveric breathing model, we sought to explore the effect of flail chest injury and subsequent 
rib fracture fixation on respiratory outcomes.
Patients and Methods: We used five fresh human cadavers to generate negative breathing models in the left thorax to mimic physiologic 
respiration. Inspiratory volumes and peak flows were measured using a flow meter for all three chest wall states: intact chest, left-sided 
flail chest (segmental fractures of ribs 3 - 7), and post-fracture open reduction and internal fixation (ORIF) of the chest wall with a pre-
contoured rib specific plate fixation system.
Results: A wide variation in the mean inspiratory volumes and peak flows were measured between specimens; however, the effect of a 
flail chest wall and the subsequent internal fixation of the unstable rib fractures was consistent across all samples. Compared to the intact 
chest wall, the inspiratory volume decreased by 40 ± 19% in the flail chest model (P = 0.04). Open reduction and internal fixation of the flail 
chest returned the inspiratory volume to 130 ± 71% of the intact chest volumes (P = 0.68). A similar 35 ± 19% decrease in peak flows was seen 
in the flail chest (P = 0.007) and this returned to 125 ± 71% of the intact chest following ORIF (P = 0.62).
Conclusions: Negative pressure inspiration is significantly impaired by an unstable chest wall. Restoring mechanical stability of the 
fractured ribs improves respiratory outcomes similar to baseline values.
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1. Background
The mechanics of respiration involve complex interac-

tions between the lungs, chest wall, and changing intra-
thoracic pressure (1). A key static property of pulmonary 
mechanics is the outward elastic recoil of the chest wall 
that helps keep the lungs expanded and facilitates the 
diaphragm to generate the negative intra-thoracic pres-
sure gradient responsible for inspiration (1, 2). Changes 
in the properties of the chest wall are likely to directly af-
fect lung volumes and respiratory function (3).

Flail chest injuries represent significant chest wall 
trauma. With multiple segmental rib fractures the chest 
wall becomes grossly unstable, the thoracic volume de-
creases, and paradoxical inward motion of the flail seg-
ment is seen during inspiration. As a result, flail chest 
injuries are associated with prolonged ICU stays, venti-
lator associated complications, and long-term respira-
tory dysfunction (4-6).

Surgical fixation of flail chest injuries has been suggest-
ed to improve multiple critical care outcomes compared 
to traditional non-operative management (7, 8). While the 
benefits of surgical stabilization may seem intuitive, the 
mechanism for improved short-term clinical outcomes 
is unknown. Are critical care outcomes better because 
surgical stabilization minimizes pain from the constant 
movement of displaced fractures? Does fixation restore 
chest wall stability and allow proper negative-pressure 
inspiration? Or, is it a combination of both mechanisms 
that can facilitate earlier discontinuation of mechanical 
ventilation and avoidance of related complications?

Despite the potential patient benefits, operative sta-
bilization has been described as a largely underutilized 
treatment for flail chest injuries (4, 9). As traumatolo-
gists’ interest in rib fixation is renewed, an increase in rib 
specific implants and their laboratory testing has been 
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observed (10-12). Biomechanical testing of rib fracture 
fixation is important to ensure new implants are appro-
priately designed, but also to help understand the influ-
ence of fixation on clinically important outcomes. To our 
knowledge, laboratory testing of rib fracture fixation has 
been limited to single-rib, load-to-failure biomechanical 
studies, with no laboratory studies exploring the effect of 
flail chest fixation on respiratory outcomes.

2. Objectives
The purpose of the current study was to: 1) create a full 

thorax cadaveric model of negative inspiration, 2) use the 
novel full thorax breathing model to create a large flail 
chest injury, and 3) explore the effect of rib fracture fixa-
tion on respiratory outcomes in this model. We hypoth-
esized that our model would demonstrate the role of 
chest wall stability during negative pressure inspiration. 
Specifically, we hypothesized that a significant decrease 
in lung volume and peak inspiratory flow rate would be 
observed in the flail chest model, and that these respira-
tory outcomes would be improved by surgical fixation of 
the flail segment.

3. Patients and Methods
A full thorax negative pressure breathing model was 

developed to mimic physiologic breathing. Next, a five-
rib flail chest segment was created to test the effect of 
surgical fixation on respiratory function. The primary 
outcomes of interest were inspiratory volume and peak 
inspiratory flow rate.

3.1. Specimens
Five fresh human thoraces were harvested within 4 days 

post mortem (mean 3 days, range 2 - 4 days). The mean 
age of the donors was 77 years (standard deviation, 6 
years); 2 of the specimens were female (Table 1). The post-
mortem human subjects (PMHS) were obtained through 
the Maryland State Anatomy Board. All specimens were 
initially washed with a germicidal soap, disinfected with 
an arterial flush, and then stored at 4° Celsius prior to ex-
perimental testing. On the morning of testing, the speci-
mens were cross-sectioned at 10th thoracic vertebra to 
provide access to the undersurface of the diaphragm. The 
remainder of the upper body was left intact.

3.2. Breathing Model
A negative pressure breathing model was created using 

the following steps: 1) The airway was accessed through 
a standard tracheostomy incision. A size 8 Shiley trache-
ostomy tube (inner diameter 7.6 mm) was inserted into 
the trachea, and the cuff was inflated to seal the airway. 
2) Caudal traction was applied to the diaphragm using a 
5-pound weight attached to sutures in the inferior surface 
of the left hemi-diaphragm. 3) A 40-French chest tube was 
inserted into the left thorax at the anterior axillary line 

between the 4th and 5th ribs. 4) To initiate inspiration, the 
chest tube was connected to a suction pump at 5 inches 
of mercury (inHg); this created negative intra-thoracic 
pressure and passive inflation of the left lung parenchy-
ma. 5) To visually confirm lung inspiration and indirectly 
confirm an air tight system, a sealed “window” into the 
left thoracic cavity was created. The 3 × 3 cm window was 
made between ribs 3 and 4 at the lateral sternal border, 
covered with clear plastic, and its perimeter sealed with 
an adhesive dressing (Ioban, 3M). A schematic diagram of 
the model design and testing setup is found in Figure 1.

3.3. Flail Chest Model
Respiratory outcomes were assessed in three sequential 

chest wall states: intact chest, flail chest, and post-open 
reduction and internal fixation (ORIF) chest. The intact 
chest had no fractures or disruption to the soft tissues, 
aside from the sealed window required for the breathing 
aspect of the model.

To access the chest wall and create a flail chest, anterior 
and posterior longitudinal incisions were made overly-
ing ribs 3 - 7 along the anterolateral chest and postero-
medial scapular border. Using an oscillating saw, two 
fractures per rib (ribs 3 - 7) were created while preserving 
the parietal pleura, intercostal muscles, and soft tissues 
within the flail segment and surrounding chest wall (Fig-
ure 2). The fracture sites were templated to ensure the 
rib-specific plates would span both segmental fractures 
of each rib with two screws of fixation on each end. Each 
fracture was carefully manipulated to ensure complete 
displacement from the intact ribs. The skin was then sta-
pled closed and sealed with strips of Ioban dressing.

Open reduction and internal fixation of the flail chest 
was performed using rib-specific pre-contoured plates 
(MatrixRIBTM, DePuy Synthes). All five ribs (ribs 3 - 7) were 
stabilized with two screws at each side of a fracture site 
for a total of eight screws per rib. The skin incisions were 
again closed with staples and sealed with the adhesive 
dressing before testing of the post-ORIF chest wall.

3.4. Respiratory Outcomes
The inspiratory peak flow and total volume were mea-

sured in each chest wall state as described below. Pilot 
testing had demonstrated that peak flows occurred with-
in the first few seconds of our model, with only modest 
volume increases as the inspiration was prolonged to 10 
seconds. Furthermore, analysis of the preliminary speci-
mens suggested a similar magnitude of results when us-
ing 2, 3, or 10 second inspirations. As a result, we chose a 
2 Second inspiratory phase to approximate a respiratory 
rate of 12 breaths per minute and a 1: 2 inspiration to expi-
ration ratio as frequently seen during normal breathing.

The respiratory outcomes were measured using a com-
mercial flow sensor (D6F-50A-6000, Omron Electronic 
company, Schaumburg, IL) connected to the tracheosto-
my tube. Flow meter data was collected using a data ac-
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quisition card (DAQ 6008-USB card, National Instrument, 
Austin, TX) and processed using Labview v8.6. Integration 
of the flow rate calculated the total inspiratory volume. 
All parameters were measured 5 Times; the lowest and 
highest trials were discarded and a mean value for the 
remaining three trials was kept.

3.5. Statistical Analysis
Descriptive statistics were used for all outcomes of in-

terest. The mean and standard deviation (SD) was used 
to describe all continuous data. Counts and proportions 
were used for non-continuous variables. A paired t-test 
was used to test for differences between the intact chest 
and the flail chest, the flail chest and post-ORIF chest, and 
the intact chest and post-ORIF chest results.

4. Results
A significant decrease in respiratory outcomes was ob-

served in the flail chest compared to the intact chest wall 
model (Tables 2 and 3). A mean 40% relative decrease in 
inspiratory volumes was observed in the unstable chest 
wall state compared to the intact chest wall (P = 0.04). 
Similarly, a mean decrease of 3.3 L/min was observed in 
the peak flow rates of the flail chest models compared to 
the intact chest wall (P = 0.007).

Minimal variations in peak inspiratory volumes and 
flow rates were observed within the individual speci-
mens; however, a substantial range of values were ob-
served between donors. In the flail chest model, the mean 
inspiratory volume decreased to 40% ± 19% of the intact 
chest values. In the post-ORIF model, the mean inspira-
tory volume increased to 130% ± 71% of the intact chest val-
ues. The mean peak flow rate for the intact chest model 

was 5.2 L/min (SD, 2.2 L/min). In the flail chest model, the 
mean peak flow rate was 35% ± 19% of the mean peak flow 
rate in the intact model. In post-ORIF model, the mean 
peak flow rate increased to 125% ± 71% of the mean peak 
flow rate in the intact model (Table 3).

Once the segmental fractures of the flail chest were sta-
bilized with ORIF, significant increases in the respiratory 
outcomes were observed (Tables 2 and 3). When compar-
ing the respiratory outcomes between the flail chest and 
the post-ORIF chest wall, a 263% increase in respiratory vol-
ume and a 300% increase in peak flow was observed (P < 
0.02).

The post-ORIF inspiratory volumes and flow rates were 
very similar to the initial intact chest wall values. No sta-
tistically significant differences were detected between 
the two chest wall states, although the mean estimates 
for the post-ORIF chest wall tended to be higher (P > 0.68).

Figure 1. Model Design

Table 1. Specimen Characteristics

Specimen 1 2 3 4 5

Age, y 77 68 83 78 80

Gender Male Female Male Male Female

Cause of Death COPD Bowel cancer Myocardial infarction Liver cancer Myocardial infarction

Post-Mortem (d) 4 2 2 3 3

Figure 2. Fractures and fixation
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Table 2. Mean Inspiratory Volumes

Specimen 1 2 3 4 5 Mean ± SD

Intact Chest

Volume a 22 38 57 104 145 73 ± 50

Flail Chest

Volume a 8 14 33 13 84 30 ± 32 b

% of Intact 35 37 58 12 58 40 ± 19

Post-ORIF Chest

Volume a 32 95 45 91 133 79 ± 41 c,d

% of Intact 143 247 78 88 92 130 ± 71
aVolume are presented as percent.
bComparison of intact chest and flail chest volumes, P = 0.04.
cComparison of flail chest and post-ORIF chest volumes, P = 0.02.
dComparison of intact chest and post-ORIF chest volumes, P = 0.68.

Table 3. Mean Peak Inspiratory Flow Rates

Specimen 1 2 3 4 5 Mean ± SD

Intact Chest

Flow a 3.4 2.8 5.6 5.9 8.2 5.2 ± 2.2

Flail Chest

Flow a 0.60 1.4 2.7 0.75 3.9 1.9 ± 1.4 b

% of Intact 17 50 49 13 47 35 ± 19

Post-ORIF Chest

Flow a 3.8 7.0 3.9 5.1 8.8 5.7 ± 2.1 c,d

% of Intact 111 249 69 87 107 125 ± 71
aData are presented as L/min.
bComparison of intact chest and flail chest flow rates, P = 0.007.
cComparison of flail chest and post-ORIF chest flow rates, P = 0.008.
dComparison of intact chest and post-ORIF chest flow rates, P = 0.62.

5. Discussion
The results of our study demonstrate significant decreases 

in inspiratory volumes and peak flow rates with a flail chest 
injury, and restoration of respiratory outcomes to pre-inju-
ry values with surgical fixation. These results were obtained 
in a novel model using fresh, full-thorax post-mortem speci-
mens and a negative pressure breathing mechanism to 
better simulate physiological respiratory mechanics. These 
data confirm our hypothesis that negative pressure inspira-
tion requires chest wall stability, and that rib fracture fixa-
tion appears to restore functional stability.

The results of our model are consistent with previous 
clinical reports suggesting improved respiratory out-
comes in flail chest patients treated with surgical fixa-
tion. In a randomized controlled trial of wire fixation 
versus non-operative treatment, Granetzny et al report-
ed better pulmonary function test (PFT) results at two-
months post-injury in the operative group (4). Bottlang 
et al. prospectively evaluated 20 patients with flail chest 
injury fixed with MatrixRIB implants and found that 
at three months, patients had regained 84% of their ex-

pected forced vital capacity (13). Similarly, Lardinois et 
al prospectively evaluated PFTs in 50 patients with flail 
chest injuries treated with plate fixation (14). Based on 
their results, the authors concluded that surgical fixa-
tion minimizes a post-injury restrictive lung pattern, 
with only 10% of their subjects experiencing a total lung 
capacity less than 85% of the predicted value. One ran-
domized trial by Marasco et al. failed to show a difference 
in spirometry outcomes at three months, however this 
study used absorbable stabilization (Inion OTPSTM, Inion 
Inc.), not rigid fixation (15). Our results extend the work of 
these previous clinical studies by demonstrating a purely 
mechanical association between chest wall stability and 
negative pressure inspiratory volumes and peak flows.

The current study also extends previous basic science 
investigations of rib fixation implants by utilizing a novel 
testing model. Prior authors have often used a single rib 
loaded in compression to test the biomechanical proper-
ties of implants (10, 12). Although such models provide 
important information about the implant’s performance 
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in an isolated rib fracture, this is an obvious limitation to 
understanding the effects of the implant in the context of 
the entire chest wall. The soft tissues within the flail seg-
ment and the surrounding intact ribs must also be con-
sidered. Furthermore, the ability of the current model to 
measure changes in respiratory parameters between the 
intact, flail, and post-ORIF chest wall highlights the clini-
cal relevance of our model.

Several other design factors of our negative intra-tho-
racic pressure breathing model require further discus-
sion. We sought to design a whole chest model of a severe 
flail chest injury because we felt single rib models were 
too simplistic and failed to provide the clinically-relevant 
link to respiratory function that is needed to provide a 
biomechanical rationale for rib fixation. Moreover, nega-
tive intra-thoracic pressure respirations were felt to be 
a necessary design parameter since chest wall instabil-
ity behaves quite differently during positive-pressure 
ventilation. Early versions of the model did not have 
diaphragm traction and permitted paradoxical cephalad 
movement of the diaphragm and decrease of the intra-
thoracic volume which is opposite to normal physiology. 
The addition of a chest tube on suction and a weight at-
tached to the diaphragm helped artificially replicate neg-
ative pressure in vivo conditions and added to the face va-
lidity of our model. Regardless, the general observations 
of worse respiratory outcomes in the flail chest model 
and subsequent restoration of respiratory function after 
fixation in all subjects, suggest that these potential limi-
tations do not alter the conclusions of the study.

Despite demonstrating convincing changes in respira-
tory outcomes within the model, the results of our study 
must be interpreted within the context of several param-
eters. The study’s sample size involved five specimens. Al-
though this is a relatively small number, it was appropri-
ately powered to detect differences between the modeled 
injury states because of the large effect sizes observed and 
the statistical power gained by using repeated measures 
within a specimen (paired t-tests). It should also be noted 
that some study subjects had pre-existing obstructive 
lung disease and all of the subjects were elderly. Future 
research may benefit from analyzing a series of younger 
patients with normal lungs, although cadaver specimen 
access to a younger population is often challenging. In or-
der to maximize the differences between chest wall states, 
we chose to model a very large flail chest injury involving 
five “pillar” ribs and the longest segmental fragments that 
would still facilitate a single plate to span both fractures 
per rib. It is likely that smaller flail segments will have less 
pronounced respiratory effects. Furthermore, all fractures 
within the flail chest were surgically stabilized. This re-
quired an extensive extra-thoracic dissection of the para-
scapular muscles that many surgeons may wish to avoid, 
particularly since it has been suggested that is unneces-
sary to stabilize both segmental fractures of all fractured 
ribs in a flail chest (16, 17). Finally, this breathing model is 
able to successfully replicate a negative intra-thoracic pres-

sure respiratory mechanism; however, the effect of the 
intercostal muscles was not considered. Since most flail 
chest injuries are accompanied by damage to the inter-
costal muscles and previous animal models of flail chest 
have demonstrated that paradoxical chest wall motion is 
primarily driven by the changes in intra-thoracic pressure 
(18), we do not believe this limitation in our model should 
significantly alter our conclusions.

As surgical fixation of rib fractures and flail chest inju-
ries continues to gain clinical popularity, several impor-
tant questions remain. The timing of fixation, the role 
of pulmonary contusion as a contraindication, and the 
number of rib fractures necessary to stabilize in order 
to experience a benefit are unknown. While prospec-
tive clinical studies are necessary to definitively answer 
these questions, further biomechanical studies will 
greatly improve our understanding of how to manage 
these fractures. For example, stabilizing multiple seg-
mental rib fractures may detrimentally over-stiffen the 
entire chest wall. The biomechanical effect of sequen-
tially adding additional fixation on the chest wall stiff-
ness is a potential area of investigation; this is particu-
larly relevant since some authors have suggested that 
stiffness mismatch between the implants and native 
ribs is a cause of screw loosening (19).

The results of our study provide basic science data to 
support the assertion that rib fixation confers a mechani-
cal benefit to the respiration of patients with flail chest 
injuries. This study also outlines a negative-pressure 
breathing model that mimics physiologic inspiration 
and allows simultaneous testing of rib fracture fixation. 
As open reduction and internal fixation of fib fractures 
continues to grow in popularity greater clinical and 
biomechanical understanding of this intervention is re-
quired. The current study provides clinically relevant, ba-
sic science data to demonstrate an association between 
chest wall stability and inspiratory outcomes in a nega-
tive pressure breathing model of flail chest injuries.
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