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Introduction 
As the term implies, trauma refers to physical or 

psychological injury resulting from an outside factor, such 
as an accident, violence, or natural disaster. There are 
physical and psychological injuries that can occur as a 
result of trauma, including fractured bones, burns, and 
wounds, as well as anxiety, depression, and post-traumatic 

stress disorder (PTSD).[1-3] 
Globally, serious injury is the leading cause of death, and 

its effects on the economy, society, and individuals are 
significant.[4] WHO's Global Status of Road Safety Report 
2018 cites traffic accidents as the leading cause of mortality 
for those aged 5 to 29. Most of the burden is placed on 
motorcyclists, cyclists, and pedestrians in underdeveloped 
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countries. Due to established criteria, switching has a 
relatively high cost, according to the report. Taking serious 
action now is crucial to achieving any future global goals 
and saving lives.[5] Trauma prevention and treatment 
coordination present significant challenges to society 
because trauma affects prognosis.[4] 

Using large national databases, we can identify risk 
factors and outcomes that are associated with better health. 
The most common data found in these databases is 
information about hospitalized patients.[6] Implementing 
trauma care systems, including trauma registries, has been 
largely responsible for the huge reduction in injury-related 
death and disability rates.[7]  

Typically, trauma registries contain information about 
patient demographics, injury circumstances, pre-hospital 
treatment and transportation, emergency department 
visits, hospitalizations, descriptions of anatomic injuries, 
physiological measurements, complications, outcomes, 
and patient destinations. Furthermore, they increasingly 
contain information about pre-existing illnesses, which are 
recognized to be important independent of age and injury 
severity when predicting outcomes.[8-10] A researcher can 
use the data to discover trends and patterns in trauma, 
assess the effectiveness of various therapies, and generate 
new ideas regarding the causes and effects of trauma.[11-13] 
Due to the large volumes of data contained in trauma 
registries, the report notes that artificial intelligence (AI) 
techniques like machine learning are now being utilized to 
aid in diagnosis and knowledge discovery. Machine 
learning allows researchers to analyze trauma registry data 
at a scale not possible through manual review alone.[14,15] 

Since healthcare relies on data and machine learning is 
capable of extracting information, it is crucial to the 
healthcare industry. 

In the past 60 years, many industry pioneers have guided 
us in the right direction. Machine learning (ML) involves 
using various algorithmic approaches, with the specific 
type chosen dependent on the desired outcome. ML is 
commonly leveraged in software applications to improve 
the user experience through features like personalized 
recommendations. Healthcare data analytics is an area 
where ML is increasingly being applied, as companies 
work to gain insights that can help advance patient care 
and outcomes. A wide range of ML techniques are now 
being explored for medical and health-related uses. In 
order to give healthcare practitioners better-informed 
data, some startups are combining big data with machine 
learning.[16] In recent years, machine learning for 
healthcare has gained popularity with a growing number 
of studies in blood pressure,[17,18] psychology,[19] diabetes,[20] 

traumatic coagulopathy,[21] diabetic retinopathy,[22] and 
lymph node detection in head and neck.[23] 

Consequently, ensemble learning is garnering growing 
research interest from investigators in recent years as a 
potent application of machine learning for healthcare and 
medical domains.[24-27] 

In ensemble learning, multiple machine learning models 
are combined together rather than relying on one model 
alone to solve a particular problem. In this approach, 
several models work in parallel to solve a problem. The 
rationale behind ensemble learning is to generate a set of 
predictive models or hypotheses across different machine 
learning algorithms and then combine them in a way that 
aims to yield more accurate results than could be obtained 
from any single model or technique alone. 

Integrating diverse algorithms enhances predictive 
performance compared to using a single algorithm alone 
by capitalizing on their individual strengths. Ensemble 
methods combine predictions from multiple models to 
create extremely powerful forecasting methods. 

Ensemble methods combine predictions from multiple 
models to create extremely powerful forecasting methods. 
While exhibiting excellent generalizability across new data 
sets and scenarios, they omit overly specific or localized 
patterns that may not extend well to other contexts. The 
blend process leads to predictions that generalize well, 
even without detailed niche knowledge.[28,29] 

The various target classes are not uniformly represented 
in imbalanced data, with some classes having many more 
examples than others. Machine learning models may favor 
the majority class over the minority class as a result of this. 
On datasets with class imbalance, where learning 
algorithms may otherwise struggle to accurately predict 
the underrepresented classes, ensemble methods are 
commonly used to assist with this problem.[30,31] 

Decision trees are an effective machine learning 
technique for classification and predictive problems. They 
have several beneficial properties that make them well-
suited for these tasks, including being straightforward to 
interpret, not requiring assumptions about the underlying 
data distribution, and being trained on large and diverse 
datasets containing different types of variables, such as 
continuous and categorical features. 

In addition to their non-parametric nature, decision trees 
can handle a wide range of data types, making them an 
extremely versatile algorithm.[32-34] 

Given the benefits of ensemble methods for improving 
performance on imbalanced data problems as well as the 
strengths of decision trees as a classification algorithm, this 
study employed an ensemble approach incorporating 
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multiple decision tree models. The goal was to leverage 
both techniques to best address the challenge of the uneven 
class distribution present in the targeted predictive task. 
Considering that the use of machine learning has been 

useful in various studies[35-40] [Table 1], using this 
approach, we can gain a greater understanding of trauma 
and improve our treatment options-wide. 

 
Table 1. Related studies 

Study Methods Result 
Abujaber 
et al. [35] 

During January 2014 and February 2019, this study enrolled 
adult patients with TBIs admitted to a level 1 trauma facility. 
Artificial Neural Networks (ANNs) and Support Vector 
Machines (SVMs) were evaluated using metrics such as 
accuracy, Area Under the Curve (AUC), sensitivity, precision, 
negative predictive value (NPV), specificity, and F-score. 

Support Vector Machines (SVMs) 
demonstrated superior performance with 
accuracy and AUC of 95.6%. 

Feng et al. 

[36] 
A comparative study was conducted between twenty-two 
machine learning (ML) models and logistic regression in 
predicting survival among patients with severe traumatic brain 
injury (STBI). 

A Cubic SVM, a Quadratic SVM, a Linear SVM, 
and a Linear Decision Tree all performed better 
than linear regression. 

Benjamin 
et al. [37] 

In their study, logistic regression (LR), lasso regression, and 
ridge regression were used, using fundamental predictors 
derived from IMPACT-II. There was also machine learning 
(ML) methods used simultaneously, including support vector 
machines, random forests, gradient boosting machines, and 
artificial neural networks. 

The conventional regression method can 
perform comparably or better than machine 
learning algorithms in low-dimensional 
contexts of outcome prediction for moderate 
and severe traumatic brain injuries. In order to 
ensure ML algorithms' relevance across 
multiple populations, rigorous validation 
remains essential. 

Lu et al. 

[38] 
The purpose of this study was to integrate data mining 
techniques with serial Glasgow Coma Scale (GCS) scores and 
clinical and laboratory parameters in order to predict 6-month 
functional outcomes and mortality among patients with 
traumatic brain injury (TBI). Both mortality and functional 
outcomes were forecasted using artificial neural network 
(ANN), naïve Bayes (NB), decision tree, and logistic regression 
methodologies. 

AUC values of 96.13%, 83.50%, and 89.73% 
were achieved by the artificial neural network 
(ANN) for functional outcome forecasting. 
This model generated the best mortality 
prediction results with an AUC of 91.14%, a 
sensitivity of 81.17%, and a specificity of 
90.65%. 

Ploeg et 
al. [39] 

The study predicted 6-month mortality in traumatic brain 
injury (TBI) patients using various models, including logistic 
regression (LR), classification and regression trees (CART), 
random forests (RF), support vector machines (SVM), and 
neural networks (NN) to make prognostications. 

Logistic regression models performed best 
among the complex predictive models, 
achieving the highest validated median area 
under the receiver operating characteristic 
curve value of 0.757. 

Hertz et 
al. [40] 

The study assessed various machine learning algorithms, 
including decision tree, logistic regression, naive Bayes, 
support vector machine (SVM), K-nearest neighbor (KNN), 
and ensemble classifiers, to classify whether bladder injury 
occurred based on factors during initial presentation of blunt 
pelvic trauma. 

The Gaussian and Kernel Naive Bayes 
classifiers performed best, both achieving high 
accuracy of 97.8%, specificity of 99%, sensitivity 
of 83%, and AUC of 0.99. These optimal 
classification results were obtained using naive 
Bayes models. 

Objectives 
This study aimed to use ensemble and decision tree 

machine learning models to predict trauma patients' 
discharge status. There are several potential benefits to this 
approach, such as improved patient outcomes, more 
optimized resource utilization, cost savings, increased 

efficiency, and personalized care. The goal was to provide 
hospital care teams with predictive insights to inform 
patient care and resource planning. This study is divided 
into five sections: 

Section 1 outlines the data used and discusses the 
machine learning architectures and algorithm selection. 



Kohzadi et al 

140   |   Arch Trauma Res. 2023;12(3):137-149 

Section 2 describes the evaluation method. Section 3 
presents the results from running the algorithms on the 
data. Section 4 discusses the findings, limitations, and 
conclusions. Section 5 discusses potential future work. By 
covering the data, methods, results, discussion of findings 
and limitations, and avenues for future research, the six 
sections provide a comprehensive overview of the study. 
 
Methods 

We conducted a retrospective analysis of the Kashan 
Trauma Center registry data. The objective of this study 
was to compare decision trees and their combination with 
ensemble methods to predict the discharge status of 
trauma patients. 

 

2.1 Dataset 
In this study, data from March 2018 to February 2019 

were employed, obtained from the Kashan Trauma 
Registry. We obtained 3930 records after pre-processing 
the data, including removing missing data and outlier 
records. As a result, missing values were imputed using the 
mean for numerical variables, and using the mode for 
categorical variables. The numerical variables in the data 
were normalized using the min-max normalization 
formula [Formula 1]. The categorical variables were 
encoded using one hot encoding to transform them into 
binary coded formats.[41, 42] 

Y= X−X(MIN)
X(MAX)−X(MIN)

 (1) 
 

2.2 Ensemble Algorithm 
Ensemble classifiers combine basis classifiers for the final 

classification. Any supervised classifier, such as decision 
trees, neural networks, or support vector machines, can be 
used as the base classifier. A brief overview of ensemble 
learning methods is provided here. One of the earliest 
ensemble algorithms developed was bagging (also known 
as bootstrap aggregating). Bagging helps to reduce the 
model's variance, which makes it effective for unstable 
models like decision trees. It is also easy to implement in 
parallel and distributed environments.[43-45] By using the 
boosting method, each base classifier is not built 
independently. Rather than doing it all at once, the basic 
classifiers are built one at a time, considering any mistakes 
made by the fundamental classifiers before them. This 
method is more effective than bagging, and it minimizes 
system bias. Additionally, it can be used with weaker 
models.[44-47] The stacking method, also referred to as 
stacked generalization, constructs ensembles differently 
than bagging or boosting. As described by Wolpert, 
stacking utilizes the outputs or predictions of the original 

base classifiers as inputs to train a new level of classifiers. 
Through this technique of leveraging one classifier's 
outputs to inform another, stacking is able to estimate and 
compensate for biases present in the individual base 
models.[44, 48] 

 

2.3 Decision Trees 
As a classification strategy, decision tree analysis is 

basically a divide-and-conquer approach. Decision trees 
can be used in large databases to find important features 
and patterns needed for distinguishing between things and 
predicting them. The features of decision trees as well as 
their natural interpretation have led to their widespread 
use for both exploratory data analysis and predictive 
modeling over the past two decades.[49] When constructing 
decision trees, several metrics can evaluate the purity or 
impurity of potential split points in the data, such as the 
Gini index, information gain, gain ratio, and 
misclassification rate. Information gain quantifies the 
reduction in uncertainty of the target variable resulting 
from a split. Gain ratio considers the inherent information 
contained in the splitting attributes. The Gini index 
measures the degree of impurity in the target variable after 
a split. Depending on the specific problem and 
characteristics of the available data, different metrics may 
be more suitable for selecting the best split rule. The 
properties of the situation and data should inform the 
choice of an appropriate impurity measure to guide tree 
construction.[50, 51] 

 

2.4 Regression Logistic 
For binary classification challenges, logistic regression is 

commonly used due to its statistical underpinnings.[52] 
Previous studies have incorporated logistic regression as 
the second layer in ensembles.[53-55] Similarly, logistic 
regression was also part of our proposed approach in this 
study. 

 

2.5 KNN 
KNN classification predicts queries based on the majority 

class of its k nearest neighbors in training data. Due to this 
capability, KNN was selected as one of the top 10 data 
mining algorithms [50, 56, 57]. Ensemble methods like 
random forests, gradient boosting and AdaBoost often use 
decision trees as base algorithms. These methods train 
multiple decision trees on subsets of training data or with 
randomization. Combining tree predictions improves 
accuracy by utilizing strengths of different algorithms 
while preventing overfitting.[58] Decision trees are 
commonly used as they find nonlinear relationships and 
are interpretable.[59] 
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2.6 Implemented Framework 
This section explains how to select a model. The study's 

approach is categorized into four sections, as depicted in 
Figure 1. 
• In the initial section, the study employs a total of 12 

decision trees for classification. These decision trees are 
characterized by utilizing the Gini index and have 
depths of 10, 8, 6, and 5. Additionally, decision trees 
based on information gain and gain ratio are utilized, 
also with depths of 10, 8, 6, and 5. 

• The second section involves a depth-based model. 
Within the framework of the bagging algorithm, 
decision trees are utilized for voting. For instance, 
decision trees employing the Gini index, information 
gain, and gain ratio indices are used for various depths, 
such as Bagging-10-depth, Bagging-8-depth, Bagging-
6-depth, and Bagging-5-depth. This process is 
replicated for the boosting algorithms, resulting in the 
creation of four models named Boosting-depth-10, 
Boosting-depth-8, Boosting-depth-6, and Boosting-
depth-5. 

• The third section focuses on a learning metrics-based 
model. In this part, decision trees are utilized for voting 
based on each learning metric. For instance, decision 
trees with depths of 10, 8, 6, and 5 are employed for the 
information gain learning metric. This process is 
repeated for other learning metrics as well. 
Consequently, three models of the bagging algorithm 
are derived: Bagging-information gain, Bagging-gain 
ratio, and Bagging-Gini index. The same procedure is 
applied to the boosting algorithm, resulting in the 
creation of three models: Boosting-information gain, 
Boosting-gain ratio, and Boosting-Gini index.  

• The fourth section involves the utilization of a stacking 
ensemble approach. The base algorithms employed in 
this approach were decision tree and k-nearest 
neighbors, while the Meta level or the top-level 
algorithm used was logistic regression. 

Furthermore, in terms of measuring distance, the 
Euclidean distance exhibited superior performance 
compared to other metrics, particularly when k=12. As a 
result, all stacking models utilized the k-nearest neighbors 
(KNN) algorithm with 12 nearest neighbors and the 
Euclidean distance metric. The 10-fold cross-validation 
technique was employed throughout all stages of the study. 
As an example, the Stacking-Gini index model 
incorporates the following components: 

 For the Stacking-Gini index model: 
Base Level: 

• Decision trees with depths of 5, 6, 7, and 8, using the 
Gini index. 

• K-nearest neighbors (KNN) with k=12, using the 
Euclidean distance metric. 

Meta Level: 
• Logistic regression. 

For the Stacking-depth-10 model: 
Base Level: 
• Decision trees with a depth of 10, utilizing the Gini 

index, information gain, and gain ratio. 
• K-nearest neighbors (KNN) with k=12, using the 

Euclidean distance metric. 
Meta Level: 
• Logistic regression. 

 

Bagging is an ensemble technique that involves training 
an algorithm multiple times using different subsets of the 
training data. The final prediction is determined by 
averaging the predictions of all the sub-models. On the 
other hand, boosting is a sequential training approach 
where multiple models are trained iteratively, with each 
subsequent model learning from the mistakes made by its 
predecessors. In each iteration, data points are assigned 
weights, and the focus is shifted to reweighting 
misclassified points in the next round. The final classifier 
is a weighted sum of the ensemble predictions. 

Stacking, another ensemble technique, combines diverse 
machine learning models (known as base learners) using 
an additional data mining method. First, the base learners 
are trained individually. Then, a combiner (referred to as 
the meta-classifier) is trained to generate the final 
prediction based on the predictions made by the base 
learners. The process of these algorithms is depicted in 
Figure 2. 

 

3. Evaluation 
A confusion matrix is a commonly used table for 

evaluating the performance of a classification model. It 
presents the counts of true positives, false positives, true 
negatives, and false negatives for each class in the dataset. 
These values in the confusion matrix are utilized to 
compute various performance metrics, including 
accuracy, precision, recall, and F1 score [60]. The ROC 
curve is a graphical representation of the trade-off between 
true positive rate (sensitivity) and false positive rate (1-
specificity) as the decision threshold of a binary 
classification model is adjusted. The AUC value, ranging 
from 0 to 1, indicates the model's overall classification 
performance, with 1 representing perfect classification and 
0.5 indicating random classification. 



Kohzadi et al 

142   |   Arch Trauma Res. 2023;12(3):137-149 

To evaluate the algorithms' performance, we calculated 
several metrics including accuracy, precision, recall, F-
measure, and the area under the ROC curve (AUC). These 
metrics provide insights into the algorithms' ability to 
correctly classify different categories. Specifically, we 
define the following evaluation indices: 
• TP: Represents a patient who is actually improved and 

has been correctly classified as such by the predictor. 
• TN: Represents a patient who is actually non-improved 

and has been correctly classified as such by the 
predictor. 

• FP: Represents an observation that is incorrectly 
classified as improved when it is actually non-
improved. 

• FN: Represents a patient who is actually non-improved 
but has been incorrectly classified as improved by the 
predictor. 

These evaluation indices help assess the algorithms' 
performance in accurately identifying improved and non-
improved cases. 

 

Precision =   TP
(TP + FP)

 (5) 
 

Recall =    TP
(TP + FN)

 (6) 
 

F-measure =  (2 × Precision × Recall)
(Precision+ Recall)

 (7) 
 

Considering the data imbalance, precision and recall 
criteria are also important, in addition to accuracy. In 
order to balance precision and recall, the F-measure 
criterion is used. 

 

Ethical considerations 
The study was conducted in accordance with the 

Declaration of Helsinki. Institutional Review Board 
approval (Ethics code: 
IR.KAUMS.NUHEPM.REC.1401.038) was obtained.  

 
Results 

A summary of the data employed for this research can be 
found in Table 2

 
 

 
Figure 1. Architecture of a data mining technique and the process of algorithm selection

Accuracy =   (TP +  TN)
(TP +  TN +  FP +  FN) (4)  
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There is also accuracy, precision, recall, F-measures, and 
AUCs in Table 4. The highest and lowest values for 
accuracy were 83.89% and 82.62%, precision 90.11% and 
84.69%, recall 92.96% and 83.98%, F-Measure 88.63% and 
86.93%, and AUC 0.87 and 0.85, respectively. For the 
bagging algorithm, the highest and lowest values were 
83.87% and 83.03 %, precision 89.78% and 84.84%, recall 
92.28% and 84.39%, F-Measure 88.51% and 87.00%, and 
AUC 0.88 and 0.84, respectively. As a result of the boosting 
algorithm, the highest and lowest accuracy values were 

83.87% and 83.08%, precision 89.88% and 84.78%, recall 
92.77% and 84.34%, F-Measure 88.59% and 87.02%, and 
AUC 0.86 and 0.82, respectively. 

 The highest and lowest accuracy values for the stacking 
algorithm were 85.75% and 83.69%, precision 86.59% and 
85.93%, recall 94.21% and 89.93%, F-Measure 89.89% and 
88.11%, and AUC 0.89 and 0.87, respectively. 

TP, TN, FP, and FN for various algorithms are shown in 
Table 3 based on the confusion matrix.  

 

  

 
Figure 2. Process of ensemble algorithms. (DT1, DT2, DT3, DT4: Decision tree with different parameters, RL: regression logistic) 
 

Table 2. Dataset used in data mining 
Features Feature 

type 
Category Percentage 

Age Numerical   
Place birth Categorical City  

Village  
87.07 
12.92 

Type of insurance Categorical Treatment services 
Social security 
Military  
Bank  
Free  
Others  

6.94 
26.53 
1.17 
0.15 

12.29 
52.9 

Sex Categorical Male  
Female  

78.06 
21.94 

Occupation Categorical Child  
Staff  
Worker  
Farmer  
Unemployed  
Students  
Businessmen  

4.86 
0.96 

14.32 
3.81 
6.1 

14.73 
8.54 
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Housewives  
Others job 
Unknown  

15.67 
28.01 
0.03 

Education Categorical Child  
Illiterate  
School  
High school 
After diploma  

4.86 
2.72 

13.89 
72.41 

6.1 
Type of 
conveyance 
carrying to 
emergency 

Categorical Ambulance  
Taxi  
Personal vehicle 

71.83 
0.17 

27.97 

Total expenditures Numerical - - 
Number of days 
admitted 

Numerical - - 

 ICD-external 
causes  

Categorical Pedestrian injured in transport accident 
Pedal cyclist injured in transport accident 
Motorcycle rider injured in transport accident 
Car occupant injured in transport accident 
Water transport accidents 
Slipping, tripping, stumbling and falls 
Exposure to electric current, radiation and extreme ambient air 
temperature and pressure 

7.5 
1.8 

31.29 
12.74 
22.59 
18.72 
4.37 

 
ICD-injuries  
 

Categorical Injuries to the head 
Injuries to the abdomen, lower back, lumbar spine, pelvis and external 
genitals 
Injuries to the shoulder and upper arm 
Injuries to the elbow and forearm 
Injuries to the wrist, hand and fingers 
Injuries to the hip and thigh 
Injuries to the knee and lower leg 
Injuries to the ankle and foot 

12.49 
1.52 
5.36 

11.19 
21.65 
7.83 
9.1 

6.87 

State of discharge Categorical No improvement 
Improvement  

31.79 
67.21 

 
Table 3. True Positive, True Negative, False Positive, False Negative for different algorithms 

  TP TN FP FN 
Decision Tree1-10* 2222 1039 244 424 
Decision Tree2-10 2372 893 385 279 
Decision Tree3-10 2351 916 365 298 
Decision Tree1-8 2233 1031 253 414 
Decision Tree2-8* 2383 888 382 277 
Decision Tree3-8 2380 893 386 271 
Decision Tree1-6 2235 1030 254 411 
Decision Tree2-6 2448 844 431 206 
Decision Tree3-6 2433 847 428 222 
Decision Tree1-5 2300 947 300 383 
Decision Tree2-5 2468 829 446 187 
Decision Tree3-5* 2462 834 442 192 
bagging-Gini 2433 859 421 217 
Bagging-Information gain 2445 850 427 208 
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*Decision Tree1-10: Gain-ratio(depth:10), Decision Tree2-8: Information-gain(depth:8), Decision Tree3-5: Gini index(depth:5) 
 
Table-4. The performance of Decision Tress algorithms and Models based on the confusion matrix and the Area under the 

ROC Curve 

Bagging-Gain ratio 2232 1031 254 413 
Bagging-depth-10 2350 946 334 300 
Bagging-depth-8 2373 911 362 284 
Bagging-depth-6 2393 884 381 272 
Bagging-depth-5 2451 836 438 205 
Boosting-Gini 2378 900 380 272 
Boosting-Information gain 2384 901 370 275 
Boosting-Gain ratio 2230 1035 251 414 
Boosting- depth-10 2325 963 316 326 
Boosting- depth-8 2357 919 350 304 
Boosting- depth-6 2428 850 417 235 
Boosting- depth-5 2462 834 442 192 
Stacking-Gini 2376 913 375 266 
Stacking-Information gain 2411 912 376 231 
Stacking-Gain ratio 2468 884 404 174 
Stacking- depth-10 2409 915 373 233 
Stacking- depth-8 2453 901 387 189 
Stacking- depth-6 2476 885 403 166 
Stacking- depth-5 2489 881 407 153 

  Accuracy Precision Recall F Measure AUC 
Decision Tree1-10* 83.00% 90.11% 83.98% 86.93% 0.86 
Decision Tree2-10 83.10% 86.04% 89.48% 87.72% 0.87 
Decision Tree3-10 83.13% 86.56% 88.75% 87.64% 0.88 
Decision Tree1-8 83.03% 89.82% 84.36% 87.01% 0.85 
Decision Tree2-8* 83.23% 86.18% 89.59% 87.85% 0.88 
Decision Tree3-8 83.28% 86.04% 89.78% 87.87% 0.88 
Decision Tree1-6 83.08% 89.80% 84.47% 87.05% 0.85 
Decision Tree2-6 83.79% 85.03% 92.24% 88.49% 0.88 
Decision Tree3-6 83.46% 85.04% 91.64% 88.22% 0.87 
Decision Tree1-5 82.62% 88.46% 85.72% 87.07% 0.85 
Decision Tree2-5 83.89% 84.69% 92.96% 88.63% 0.86 
Decision Tree3-5* 83.87% 84.78% 92.77% 88.59% 0.86 
Bagging-Gini 83.77% 85.25% 91.81% 88.41% 0.88 
Bagging-Information gain 83.84% 85.13% 92.16% 88.51% 0.88 
Bagging-Gain ratio 83.03% 89.78% 84.39% 87.00% 0.84 
Bagging-depth-10 83.87% 87.56% 88.68% 88.11% 0.88 
Bagging-depth-8 83.56% 86.76% 89.31% 88.02% 0.88 
Bagging-depth-6 83.38% 86.27% 89.79% 87.99% 0.86 
Bagging-depth-5 83.64% 84.84% 92.28% 88.40% 0.86 
Boosting-Gini 83.41% 86.22% 89.74% 87.94% 0.86 
Boosting-Information gain 83.59% 86.56% 89.66% 88.08% 0.86 
Boosting-Gain ratio 83.08% 89.88% 84.34% 87.02% 0.85 
Boosting- depth-10 83.66% 88.03% 87.70% 87.87% 0.86 
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Discussion 

Until 2018, traffic accidents ranked eighth in terms of 
global mortality. These accidents result in millions of 
injuries and thousands of fatalities annually. However, it is 
important to acknowledge that all these deaths and injuries 
could have been prevented. Road safety, an issue that 
deserves more attention, holds immense potential for 
saving lives worldwide.[5] Consequently, this retrospective 
study explores the application of ensemble approaches in 
predicting the mortality of trauma patients. 

 The study findings indicate that data mining techniques 
exhibit satisfactory performance in predicting the 
mortality of trauma patients. One of the advantages of this 
study is the utilization of indigenous data. Furthermore, 
the scarcity of research on trauma data mining and 
ensemble learning adds to its significance. The results 
demonstrate that data mining approaches, particularly 
ensemble methods, exhibit strong predictive capabilities 
for patient mortality. Consequently, we can anticipate 
further research in this field. Previous studies have 
consistently shown that ensemble learning outperforms 
individual learning approaches. 

In Raza's study,[26] it was demonstrated that ensemble 
learning outperforms individual classifiers in terms of 
accuracy. Similarly, in the present study, ensemble 
learning algorithms exhibited superior performance 
compared to individual algorithms. Moreover, another 
study[61] found that the performance of individual learning 
algorithms was weaker compared to ensemble learning 
algorithms. In a study[62] focused on categorizing brain 
tumors and auto-immune disease lesions using magnetic 
resonance imaging, an ensemble learning approach was 
proposed. The base learner consisted of a support vector 
machine classifier and a majority voting prediction model. 
The experimental results indicated an overall training 
accuracy of 97.95% and a testing accuracy of 97.744% for 
their proposed model. Another study[66] successfully 

utilized an ensemble learning approach to predict heart 
disease. Multiple classification techniques were employed 
in this investigation. 

According to the study, the ensemble approach 
outperformed previous categorization methods with an 
accuracy of 86.32%. According to this study, algorithms 
that are working together to learn perform better than 
those that are working alone. 

The results of this study and those of studies[35,36,38,39,40,63] 
showed that machine learning algorithms could be useful 
in trauma research.  

According to the study,[37] machine learning algorithms 
are not more efficient than traditional regression 
algorithms, whereas the current study examined different 
parameters in the decision tree and then applied them to 
other collective algorithms, and the results showed that the 
algorithm could be used to predict trauma patients' 
discharge status. 

In spite of the fact that the present study showed good 
results for machine learning methods, it also had some 
limitations. These limitations include: Data were for some 
years ago and therefore, accessing to PMH (Past medical 
history) is not possible for missing data. Therefore, we 
cannot determine the efficiency of imputation methods 
with respect to real values. 

Moreover, conventional techniques like mean and mode 
were employed to handle missing data. Nevertheless, 
alternative approaches might yield diverse outcomes more 
effectively. The study primarily concentrated on utilizing 
decision trees and the ensemble method, which enables the 
integration of other data mining techniques. Subsequent 
research on trauma data could explore additional 
methods, such as oversampling and undersampling, to 
address imbalanced data. Moreover, alternative 
classification algorithms like SVM, neural networks, 
random forest, and Naïve Bayes were employed for 
diagnosing the discharge status of trauma patients.  

Boosting- depth-8 83.36% 87.07% 88.58% 87.82% 0.86 
Boosting- depth-6 83.41% 85.34% 91.18% 88.16% 0.85 
Boosting- depth-5 83.87% 84.78% 92.77% 88.59% 0.82 
Stacking-Gini 83.69% 86.37% 89.93% 88.11% 0.87 
Stacking-Information gain 84.55% 86.51% 91.26% 88.82% 0.87 
Stacking-Gain ratio 85.29% 85.93% 93.41% 89.52% 0.88 
Stacking- depth-10 84.58% 86.59% 91.18% 88.83% 0.87 
Stacking- depth-8 85.34% 86.37% 92.85% 89.49% 0.88 
Stacking- depth-6 85.52% 86.00% 93.72% 89.69% 0.89 
Stacking- depth-5 85.75% 85.95% 94.21% 89.89% 0.89 
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Conclusions 
The research findings revealed that the efficacy of 

decision trees is not solely determined by the depth of the 
tree, but also by the accurate selection of parameters such 
as information gain, gain ratio, and Gini index. 
Furthermore, the study demonstrated that employing 
ensemble learning techniques, such as stacking, can yield 
superior results compared to relying solely on the decision 
tree algorithm. The evaluation of a classifier's performance 
should not rely solely on precision and recall, as it depends 
on factors such as the study's objective, the cost of false 
positives and false negatives, and the balance or imbalance 
of classes. However, when precision, recall, and accuracy 
simultaneously exhibit high values, it indicates excellent 
performance of the classifier model. Ensemble learning, 
particularly through group voting, can outperform 
individual classification algorithms. The ensemble 
algorithm's acceptable performance is demonstrated when 
precision, recall, and accuracy all display high values. The 
selection of the best underlying algorithms directly 
impacts the performance of ensemble learning algorithms. 
By selecting appropriate metrics and depths, the ensemble 
algorithm effectively utilizes the distance and number of 
correct neighbors in KNN. Overall, the results indicate 
that machine learning techniques can effectively generate 
outputs for predicting the discharge status of trauma 
patients, and these outputs were deemed satisfactory in 
terms of their value.  
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