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Abstract

Original Article

Introduction

The wound healing issue has always been an interesting subject 
of researchers and usual people. The ancient Egyptians were 
using a variety of compounds such as animal fats, honey, 
and plant fibers for the treatment of burns and diabetes 
wounds.[1‑4] Maintaining the integrity of the skin in humans is 
vital to protect against water loss, bleeding, and counteracting 

Background: A study conducted on wound treatment by antibacterial wound dressings can reduce the need for using antibiotics to a minimum 
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make a flexible wound dressing from a biocompatible and biodegradable polymer, N‑O‑carboxymethyl chitosan, diopside was added to improve the 
mechanical and hydrophobic properties of the soft tissue and cell proliferation was fabricated. After making the samples, a variety of chemical and 
biological tests and analyses were performed on the samples, including scanning electron microscope and Fourier‑transform infrared spectroscopy. 
Results: The results showed that the use of this wound dress significantly reduced the risk of infection at the wound site. Conclusions: An antibacterial 
product with the proper mechanical behavior as a soft tissue was produced and evaluated in this study. The chemical and biological investigation 
represented that the sample with 5 wt% magnetite nanoparticles has excellent characteristics and can be introduced as a wound dressing application.
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the entry of microorganisms. Therefore, wound healing is 
carried out with advanced mechanisms and techniques such 
as electrospinning and freeze‑drying (FD).[5‑7] Wound healing 
is essential in terms of time and pain because skin regulates 
important functions in the body and has a protective role. 
Many factors such as immune system, moisture, the acidity 
of the wound, and biofilm fabrication under the wound 
site can prevent wound healing.[8‑11] It should be noted that 
carboxymethyl chitosan (CMC) is one of the most compatible 
biopolymers combined with ceramic nanoparticles containing 
suitable antibacterial properties and biocompatible property in 
the soft tissue. Unfortunately, the healing process of chronic 
wounds can take months or years. Therefore, there is a vital 
need for special wound dress that maintains moisture and 
removes excess secretions from a particular environment and 
can control temperature and improve the pH in the healing 
process.[12‑15] On the other hand, a proper wound dressing 
should be able to create a warm and moist environment on 
the wound surface with having suitable proliferation and 
differentiation of keratinocyte cells and thus it can cause 
growth factors (GFs) to contact with the wound surface and 
increase the rate of healing.[5‑11,16‑19] To make a wound dress with 
the above purposes, natural polymers have been considered 
due to their high biocompatibility, biodegradability, and similar 
properties to the body tissues in the wound healing process.[20‑24]

Polymers used for skin applications should not cause damage 
or inflammation to the skin. Chitosan is a biopolymer that 
does not show any toxic effects, injury, or inflammation. 
Hence, it can be a suitable choice for treating wounds and 
burns.[25‑27] Biofibers are made of chitin and chitosan, which 
effectively make absorbable structures and prepare fabrics for 
wound healing. Recently, chitosan and its derivatives have 
been proposed as a suitable candidate for bone scaffold since 
they are nontoxic, biocompatible, and biodegradable.[28‑32] 
According to the results released by Lim et al.,[33] chitosan 
stops the growth of microorganisms on the wound. Since red 
blood cells and platelets have a negative charge, they bind to 
the positively charged chitosan, causing the blood to clot and 
prevent bleeding.[34‑37] Due to the antibacterial properties of 
chitosan, it accelerates the wound healing process. In this study, 
to achieve the unique features of polymers and according to 
the mentioned characteristics, N‑O‑CMC is considered as the 

base polymer with the addition of bioceramic to evaluate its 
chemical and biological response.[4,18,33,38‑41] Figure 1 shows 
the chemical structure of CMC, which has been used in the 
treatment of cancer, wound healing, and cosmetic problems. 
N‑O‑CMC is a chitosan derivative with interesting physical 
and biological properties such as moisture retention, gel 
formation, excellent biocompatibility, antibacterial activity, 
and significant chemical activity.

Since polymers have poor mechanical properties, composite 
polymer preparation is one of the ways to improve their 
mechanical and chemical properties. The use of composites as 
biomaterials in the restoration of damaged living tissues is the 
subject of many recent studies in medical applications.[40‑45] One 
of the most popular bioceramics in tissue engineering is 
the diopside, which contains sufficient amounts of silicon 
and magnesium ions with the chemical composition of 
CaMgSi2O6.

[42,43] Several researchers worked on using different 
drugs on wound and bone to consider their effects, after 
short‑ and long‑term follow‑up periods.[44‑53] In this regard, the 
aim of this study was to make a polymer‑based wound dressing 
with ceramic and antibacterial nanoparticles using the FD 
method, which can be used to repair and regenerate damage on 
the skin due to its proper mechanical and biological properties.

Methods

Materials preparation
In this study, to make a flexible wound dressing from a 
biocompatible and biodegradable polymer, N‑O‑CMC, 
diopside was added to improve the mechanical and hydrophobic 
properties of the soft tissue and then cell proliferation was 
fabricated. Figure 2 illustrates the fabrication process of a novel 
soft tissue with antibacterial properties. A  specific amount 
of CMC was solved in 100 mL distilled water with 1 vol% 
acetic acid (CH-COOH) and glutaraldehyde as a cross‑linking 
agent. In the first step, according to the previous studies,[4,18] 
a novel tissue is fabricated and prepared using CMC solution 
containing a certain percentage of diopside nanoparticles. 
The obtained solution was placed in a homogeneous thermal 
magnetic stirrer for 1 h to make it homogenized. Then, the 

Figure 2: The preparation of soft tissue using the freeze-drying technique
Figure 1: Chemical structure of N-O-carboxymethyl chitosan used in 
this study
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samples were transferred to a ‑65°C freezer for 24 h. Afterward, 
they were placed in the freeze‑drier for 48 h at ‑45°C.

Experimental analysis
In the present  s tudy,  Fourier‑ transform infrared 
spectroscopy  (FTIR) was used to investigate the structure 
of the synthesized nanocomposite samples containing 
various amounts of MNPs in order to study the structure and 
chemical bonds of the nanocomposites. Thus, the morphology 
of the samples was observed with a scanning electron 
microscope  (SEM)  (AIS2300C‑20KV) at an accelerating 
voltage of 10 kV. To increase the electrical conductivity of 
the specimens and the images’ sharpness, the specimens were 
coated with a skinny layer of gold.

Experimental testing
The degradation diagram shows that the sample with the lowest 
amount of MNPs had the most moderate amount of heavy ion 
absorption.[1] Therefore, it can be concluded that weight loss is 
more significant in biological evaluation. On the other hand, 
porosity is also crucial in terms of weight loss and weight 
gain. For instance, as the porosity is low, the weight might 
be low. The results showed that as the percentage of MNPs 
increases, water absorption and subsequent degradation rate 
increase.[1] These findings can be attributed to the possible 
chemical bonds between the nanoparticles and the CMC. 
Moreover, the presence of ion groups in the nanocomposite 
structure can support the formation of physical, hydrogen 
bonds, and ion interactions of the sample. Since the wound 
dress is supposed to be placed in the natural and biological 
environment of the body, it is necessary to study some 
characteristics related to the physiological conditions of the 
body to evaluate the layer formation of the samples in the 
biological environment. To determine the biological reaction 
of the nanocomposite sample in the solution, 1 cm of each 
sample is placed in the plastic with 10 mL simulated body 
fluid  (SBF). Then, the falcons were placed in the water 
bath for 14 days at a constant temperature of 37°C. At the 
end of 1, 4, 7, 14, and 21 days, the suitable containers were 
removed from the water bath, and the corresponding pH for 
each sample was measured. To perform a biological test and 
check the nontoxicity, the pH of the samples was checked 
in the SBF solution. According to the previous studies,[24,33] 
chitosan and its derivatives have excellent antibacterial 
properties against Gram‑negative and Gram‑positive bacteria, 
as well as antibiotic‑resistant bacteria. The biological 
property and antibacterial activity of the samples containing 
different weight percentages of MNPs were investigated in 
the presence of Gram‑positive (Staphylococcus aureus) and 
Gram‑negative  (Escherichia coli) bacteria, which are the 
essential microorganisms in the wound environment as shown 
in Figure 3.

For the evaluation of the antibacterial response of the sample, 
we prepared a bacteria solution with a concentration of 
0.5 McFarland, and then, we placed the samples in a test tube 
and incubator at 37°C for 18–24 h. Then, the antibacterial 

process needed 24 h of bacterial culture. To remove moisture, 
the synthesized wounds were transported into the molds of 
agar cultures (containing E. coli and S. aureus bacteria). At 
the end of the multivariate culture of Agar, they were placed 
in an incubator at 37°C ± 1°C for 18 h.

Results

The FTIR spectrum of CMC polymer with different 
compositions of ceramic and MNPs was shown in Figure 4. 
The significant peaks corresponded to O‑H tensile vibration 
at 9158, also the C‑H bond tensile vibration at 2077, and N‑H 
flexural vibration at 1520 occurred. Polysaccharide‑related 
peaks, including glycosidic vibrations, C‑O, and C‑O‑C 
tensile vibrations, can be seen at 1188 range. According to 
Figure 4a‑d, the peak (at 1480 peak) indicates the symmetrical 
axial deformation of the COO, which confirms the presence 
of carboxymethyl groups. On the other hand, the interaction 
of CMC chains with Fe ions causes a clear change from 
the carboxylate bond  (1607/cm) to a higher number of 
descending waves (11,640/cm), which confirms the presence 
of nanoparticles in the polymer matrix.

Figure 5a‑d illustrates the SEM images of the porous samples 
with homogenized and irregular distribution and dispersion of 
the MNPs. The examination of the immersed sample in the SBF 
solution after 21 days shows an absence of nanoparticles. It can 
be concluded that the calcium silicate bioceramic nanoparticles 
are more stable regarding their spherical shape surrounded 
by the polymer in the sample containing 5 wt% of MNPs. 
Furthermore, the SEM images indicate a successful complete 
network between the polymer and ceramic in the sample 
with 5 wt% MNPs, which can cause the polymer structure to 
remain constant.

The biodegradability results of the samples are shown in 
Figure  6. The weight loss results affected by the weight 
percentage of the MNPs are shown in Figure 6a‑d. Figure 6a 
shows the SEM image of the samples after being placed in the 
PBS solution. A CMC polymer has surrounded the spherical 
particles in nanosystems. Figure 6b indicates clear crystalline 
plates for the sample containing 2.5 wt% MNPs. In addition, 
due to the interconnected structure and porosity ratio, the 
release rate of ions in this sample is lower. According to 
Figure 6c, ceramic nanoparticles with spherical spheres are 
well visible from the surface of the sample with the same 
roughness. Figure 6d illustrates the sample with the highest 
amount of MNPs consisting of transparent and white particles. 
In this Figure 6, the polymer surrounds the nanoparticles 
properly, and the dissolution rate is slightly higher than another 
sample, which leads to high dissolutions. The integrity of the 
skin in humans and animals is vital to protecting against water 
loss, bleeding, and counteracting the entry of microorganisms. 
For this purpose, wound healing in humans and animals is 
done by a complex and advanced mechanism. Wound healing 
is important in terms of time, as the skin regulates important 
functions in the body and has a protective role.
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As shown in Figure 7, the layer formation has been increased 
for the sample containing 5 wt%. Despite this, the sample 
containing 7.5 wt% MNPs presents a lower layer formation 
after soaking in the biological saline. Wound healing initially 
involves the homeostasis stage, in which the homeostasis 
phase begins immediately after the wound has formed. After 
the skin damage, arteries constrict and damage the platelets 
and activate the coagulation process. Then, it is followed 
by the formation of fibrin under the influence of small and 
local vascular components. Finally, plasma proteins and 
white blood cells enter the wound site. Figure 7 shows the 
pH results of the samples in the SBF after 21 days. As can 
be seen, there is no significant change in pH from the day 7th. 

Since one of the main objectives of this study is to provide 
antibacterial wound dress to prevent the possible infection 
on the wound, the antibacterial behavior of the sample is 
investigated.

Furthermore, the sample with the higher amount of MNPs has a 
controlled rate of destruction,  suitable size, a higher percentage 
of porosity for cell growth, sterility, and ultimately creates new 
tissue that can replace with the damaged tissue inside the body. 
Figure 7 shows that the dissolution rate of the novel wound 
dress containing 5 wt% MNPs is higher than the sample with 
7.5 wt% MNPs [Table 1]. Table 1 illustrates the percentage 
of the layer formation, as well as the rate of degradation of 

Figure 3: The process of fabrication and characterization of wound dressings by freezing-drying technique

Figure 4:  FTIR spectrum of polymer–ceramic samples with different concentrations; (a) 0 wt%, (b) 2.5 wt%, (c) 5 wt%, and (d) 7.5 wt% MNPs

dc

ba
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bionanocomposite containing different weight percentages 
of MNPs.[1] Table 1 shows that the addition of MNPs to the 
base matrix can enhance mechanical and biological properties 
of the sample with 5 wt% MNPs. According to the porosity 
results, it is confirmed that the degradation rate and the layer 
formation in the wound dress increase up to the sample with 
5 wt% MNPs.[53‑56]

The pH of all solutions on the 1st day, like the pH of the SBF, 
was equal to 7.4. By passing the time and with the dissolution 
of the ceramic in the solution, and penetration of ions into the 
solution, pH started to be changed. As Figure 8 shown, most 
of the changes occurred in the 1st week. In the most significant 
one, after 5 days, the pH decreased from 7.4 to 7.2. The release 
of Si bonds, calcium, and iron ions from the structure of the 
samples, after immersion in the SBF solution, was significantly 
visible. Furthermore, according to the previous research,[1,13‑17] 
the addition of MNPs nanoparticles has reduced pH. We can 
refer to Figure 9, which shows the ICP‑AES analysis of the 
porous soft bionanocomposite wound dress. In addition, the 
wound condition with moisture hurts healing, as a lack of 
moisture on the surface of the wound reduces the activity of 
cells, reduces the blood oxygenation, and severely stops the 
wound healing. On the other hand, dehydration due to sodium 
depletion can delay all aspects of the healing process.

Discussion

Figure 9 shows the ionic concentration of the sample containing 
calcium and magnesium in the diopside‑detected structure, 
using ICP‑AES. The amount of calcium ions from 32 mM in 
the sample without MNPs increased to about 35 mM for the 
sample containing 7.5 wt% MNPs. It shows that the addition 
of MNPs may increase the calcium ion interaction from the 
sample to the solution based on the mass and density of the 
MNPs and calcium ions. In addition, the release of magnesium 

ions has increased with a similar trend. The importance of 
antibacterial response of the wound dress can prevent or make 
a significant delay in the creation of biofilm under the wound 
and accelerate the wound healing process. The antibacterial 
activity of wound dress under S. aureus and E.  coli is one 
of the most important microorganisms’ environments. The 
obtained results of the antibacterial activity of wound dress 
containing MNPs are shown in Figure 10. The results show 
that the antibacterial activity of wound dress is affected by 
the concentration of MNPs, so that the antibacterial activity 
of the samples increases with increasing the concentration 
of MNPs. According to the results, bionanocomposite 
wound dress containing 5 wt% MNPs can effectively kill or 
prevent the entry of bacteria into the wound site. By taking 
the antibacterial activity and the SEM images results into 
account, it can be concluded that bionanocomposite wound 
dress containing 5 wt% MNPs presents a proper antibacterial 
and chemical properties with a sterile environment around 
the wound, that can increase cell growth and proliferation of 
fibroblast cells.[26,57‑63] Maghsoudlou et al.[64] prepared novel 
chitosan reinforcement with antibacterial nanoparticles for 
bone tissue engineering application using the FD technique. 
Farazin et al.[65] fabricated a polycaprolactone–hydroxyapatite 
reinforced with titanium oxide using the FD technique. They 
presented a homogenized soft tissue with a dimension of 10 
cm (diameter) and evaluated the mechanical and biological 
properties. However, the PCL‑HA‑TiO2 nanocomposite 

Table 1: Biological properties  (weight changes and layer 
formation) of nanocomposite

Sample Degradation rate (%) Layer formation (%)
S1 20 20
S2 31 31
S3 40 40
S4 36 36

Figure 5: SEM images of polymer–ceramic samples with different weight 
fractions of (a) 0 wt%, (b) 2.5 wt%, (c) 5 wt%, and (d) 7.5 wt% MNPs 
after being placed in SBF solution for 21 days

dc

ba

Figure 6: SEM images of polymer–ceramic samples with different weight 
fractions of (a) 0 wt%, (b) 2.5 wt%, (c) 5 wt%, and (d) 7.5 wt% MNPs 
after being placed in PBF solution for 21 days

dc

ba
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has been fabricated using a similar technique with lower 
mechanical performance.[66] In another study, Farazin et al.[67] 
investigated the mechanical properties of the novel tissue using 
molecular dynamics with Materials Studio software. Hadisi 
et al.[68] fabricated hyaluronic acid‑based silk fibroin and core–
shell using the electrospinning technique for burn approaches.

In many cases, the number of living cells in damaged tissue 
is too small that they cannot repair damaged tissue, especially 
if the goal is to service very large damage. Therefore, it 
is necessary to increase the number of isolated cells from 
biopsied tissue. For this purpose, after biopsy of a specific part 
of the body, a small number of cells are isolated. Then, these 
cells are cultured and propagated by conventional methods 
to be used in the infected site. GFs act as signaling molecules 
between cells, such as cytokines and hormones that bind to 
a specific receptor on the surface of target cells.[41‑43] They 
can also stimulate or inhibit the proliferation, differentiation, 
migration, adhesion, and expression of cell genes. These 

molecules are very vital in the wound healing process as 
they play an important role in inflammatory responses and 
promoting angiogenesis.[9,11,21,61]

Conclusions

In the present study, the nanocomposite wound dress was 
made of CMC as a polymer and diopside bioceramic 
to reinforce the chemical stability with different weight 
percentages (0, 2.5, 5, and 7.5 wt%) of MNPs, using the FD 
method. In fact, due to the polymer’s hydrophilic properties 
composed of ceramic, and the poor mechanical properties 
of chitosan in the presence of water, wet environments, and 
inadequate hardness of this nanocomposite was observed. The 
morphological investigation on the porous nanocomposites 
was performed, and the SEM images represented the size and 

Figure 8: pH changes of the samples in the SBF saline after 14 days

Figure  10:   Antibacterial diagram of bionanocomposite wound dress 
with (a) 0 wt%, (b) 2.5 wt%, (c) 5 wt%, and (d) and 7.5 wt% of MNPs

Figure 7: Comparison of porosity and degradation rate of nanocomposite 
with (a) 0 wt%, (b) 2.5 wt%, (c) 5 wt%, and (d) 7.5 wt% of MNPs

Figure 9: Graphs of the release of calcium, magnesium, and silicon ions

a b c d
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percentage of pores to evaluate the effects on the mechanical 
properties with the addition of MNPs. The amount and size of 
pores in composite scaffolds increased with the addition of 5 
wt% MNPs that selected as the best structure in terms of the 
number of porosity and uniformity on the surface of the tissue. 
According to the obtained results, it can be said that increasing 
the magnetic phase in the polymeric part may increase the 
elastic modulus. Therefore, based on the other studies and 
evaluations, it can be concluded that the addition of diopside and 
MNPs can increase the tensile strength of the product, in which 
the addition of MNPs has a significant effect on the antibacterial 
property of the wound dress. It seems that CMC nanocomposite 
tissue containing 5 wt% of MNPs prepared by FD has a good 
potential application for wound healing. On the other hand, 
the ionic release on PBS presents the proper ability of the ions 
to solve the infection problems. The release of drugs or ions 
from the wound can treat the skin lesions, mainly the issue 
of inflammation or infection because of moisture. Therefore, 
some anti‑inflammatory drugs can be loaded on the wound, 
simultaneously, to facilitate the process of tissue regeneration.
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