Effectiveness of Interventions in the Prevention of Home Injuries among Children Under 5 Years of Age: A Systematic Review

Marzieh Abbassinia, Majid Barati1, Maryam Afshari2
Department of Occupational Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran, 1Department of Public Health, Research Center for Behavioral Disorders and Substances Abuse, Hamadan University of Medical Sciences, Hamadan, Iran, 2Department of Public Health, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran

ORCID:
Marzieh Abbassinia: https://orcid.org/0000-0001-6969-6032
Majid Barati: https://orcid.org/0000-0002-5152-1928
Maryam Afshari: https://orcid.org/0000-0002-7144-5731

Abstract

Background: Injuries caused by home injuries in children under 5 years of age is one of the main causes of death in this group and also constitutes a significant public health burden. This review aimed at summarizing the literature on the effectiveness of interventions to prevent home injuries in children under 5 years of age. Methods: Magiran, Iran Medex, and SID in Persian Scientific databases and BioMed Central, PubMed, ScienceDirect, Web of Science, and Scopus were systematically searched for articles published up to June 2016. Then, two researchers reviewed the papers independently and finally, 14 studies fulfilled the inclusion criteria. Results: The results showed the effectiveness of intervention measures including training sessions at home, home visit, group discussions, and interviews as the educational tools. The educational approach was used as the intervention in 11 studies; legislative/incentive approach and engineering/technology approaches had not been used in papers; and three studies had used the educational intervention and engineering/technological approaches. Conclusions: Most of the effective inventions included studies that used the combination of effective methods to reduce the risk of injuries. Since the accidents are preventable, the appropriate intervention strategies, especially active intervention or a combination of interventional measures are effective to reduce the risk of home accidents and injuries in children.

Keywords: Children, home accidents, injury, systematic review

INTRODUCTION

Injuries are one of the main reasons for hospitalization and death around the world in children and also loss of quality of life.[1,2] The World Health Organization reports showed that 2000 infants died due to injury and 10,000 of children are exposed to some degrees of disability each year.[3] The children under 5 years of age are most vulnerable to injury; so that, the road traffic injuries, drowning, burns, falls, poisoning, and suffocation cause the death and morbidity in these children.[4]

For young children <6 years of age, more than half of the injuries resulting from accidents occur in the home.[5,6] In general, children experience the first accidents at home;[7] so that, in many developing countries, the majority of injuries to children under 5 years of age occur in the home environment.[8-10] Although many people consider the home as a safe place, therefore, the occurrence of home injuries and its consequences need to be analyzed.[11] Home injuries are created for different reasons.[11] The most important hazards that are effective to decrease the rate of home injuries

Address for correspondence: Dr. Maryam Afshari, Department of Public Health, School of Public Health, Hamadan University of Medical Sciences, Shahid Fahmideh Ave, Hamadan, Iran. E-mail: afshari_mz20@yahoo.com

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

For reprints contact: reprints@medknow.com

How to cite this article: Abbassinia M, Barati M, Afshari M. Effectiveness of interventions in the prevention of home injuries among children under 5 years of age: A systematic review. Arch Trauma Res 2019;8:190-7.

are including the history of the previous injuries in young children,\cite{12,13} age,\cite{14} environmental factor or inappropriate home environment,\cite{15,16} poor socioeconomic status of the family, and parent’s knowledge and attitude about home hazards\cite{17-19} and parents’ supervision.\cite{20,21} Furthermore, children’s dependency on parents and their vulnerability are led to increase the home injury in the children <5 years of age.\cite{22} Because children’s health is an important issue for the future of society, the prevention of injuries caused by hazards in young children is essential.\cite{7}

According to the mentioned problems and the undesirable attitudes and perceptions about risk prevention in young children, the appropriate intervention programs should be designed and implemented.\cite{7} Hence, the interventions should be implemented to examine the factors for reducing the injuries caused by accidents and to assist the prevention of injury in children under 5 years of age.

To summarize the effects of interventions and to determine the most appropriate prevention of home injuries in children under 5 years of age, this paper presented the findings from an overview of reviews about the conducted interventions of children’s injury prevention and a systematic review of the impact of interventions in the prevention of injuries caused by home accidents in children under 5 years of age. Given the different intervention approaches to promote the safety in the prevention of home injuries in children under 5 years of age in this fields, a systematic review is needed to identify and to describe the most current studies and to keep this information updated.

MATERIALS AND METHODS

Data sources

In this systematic review to identify the randomized trial interventions in order to prevent injuries caused by home hazards in children under 5 years of age, the systematic search was performed in English and Persian electronic databases, considering the articles published up to June 2016.

Referring to some of the published articles, the systematic review in Persian electronic databases was performed on Magiran, Iran Medex, SID with Persian keywords “child, children, under 5 years of age, injury, home injury, accident, intervention, and prevention.” Furthermore, the systematic review in English electronic databases was performed on “BioMed Central, PubMed, ScienceDirect, Web of Science, and Scopus.”

It should be noted that the databases investigation was performed by one person only. First, all articles were identified and entered in Endnote software. The titles of all retrieved articles were screened to exclude the nonpertinent papers and duplicates, then two researchers reviewed all papers independently, and the articles related to inclusion criteria were excluded. Abstracts of remaining papers were independently studied. Finally, the remaining full-text papers were studied and the articles, which were in accordance with the inclusion criteria, were identified. In the next step, the bibliographies of relevant articles, reference of remaining articles, and also the studies that cited these articles were reviewed to identify other potentially relevant articles and otherwise, they were not indexed or discoverable.

All the articles were again examined by two reviewers separately regarding the inclusion criteria; in case of the articles with the inconsistencies to the inclusion criteria, the papers were independently assessed by the third reviewer, and the settlement of these inconsistencies were performed by consensus.

Inclusion and exclusion criteria

Inclusion criteria included all RCTs that were conducted for mother, family, and parents of children and English and Persian-language to reduce and prevent home injuries in children under 5-year-old with no limitation on the year of publication.

Exclusion criteria included descriptive, quantitative, review, systematic review, meta-analysis, and quasi-experimental studies and before and after studies in the prevention of injuries caused by home hazards in children under 5 years. Studies for the prevention of unintentional injury among children with other interventions for health behaviors in this group, studies in elementary school, studies in ill and disabled children, studies on violence and child abuse, intervention studies about parent’s psychological conditions in injury prevention, and studies of intentional injuries in children were excluded from the study.

Effect size

Data were analyzed using comprehensive meta-analysis software, then the effect size was calculated for studies for the prevention of home injuries among children under 5-year-old. Given the heterogeneity of the studies used, the random-effects model was used to combine the results and achieve the effect size. To interpret the results, Cohen’s effect size table was used.\cite{23}

Quality assessment

Quality of the studies and risk of bias were assessed by two independent reviewers using the Cochrane Collaboration Risk of Bias Tool (CCRBT). The CCRBT was designed to assess the risk of bias in RCTs.\cite{13} It evaluates six dissimilar domains: (1) sequence generation, (2) allocation concealment, (3) blinding, (4) incomplete data, (5) selective reporting, and (6)
other forms of bias. Final results of the quality assessment tools for studies lead to an overall methodological rating of strong, moderate, and weak. Two reviewers received a similar education, Cochrane Collaboration, and its guidelines.\cite{13}

Data extraction

After finalization of the remaining articles, the researchers extracted the data and extracted a summary characteristic of the studied articles and recorded in Table 1.

Results

Initial searches identified 12,232 abstracts of papers. From which 11,798 were excluded because they did not fulfill the inclusion criteria. Then, 434 abstracts of papers were examined by two reviewers separately. In addition, 378 abstract were excluded because they did not fulfill inclusion criteria. Full texts of the remaining 56 papers were assessed by two reviewers separately, and 41 were excluded because they were not about the home injuries and in children under 5 years. Similarly, the quasi-experimental studies, as well as the studies for parents and health service providers, were excluded.

Furthermore, the results of Morrongiello et al.\cite{24} study have been reported in the paper Morrongiello et al.\cite{1} Therefore, Morrongiello et al.'s\cite{1} study was considered as the main study. The results of Gielen et al.\cite{25} study have been reported in the Gielen et al.\cite{26} and Gielen et al.\cite{26} was considered as the main study. Thus, two articles came out. Finally, 14 randomized trial studies were identified in this study [Figure 1].

Features of place and time

Among the studies, two papers were published before 2000,\cite{27,28} during the next 10 years, seven studies were conducted between 2000 and 2010,\cite{25,29-34} Other studies were published during the past 6 years (since 2010).\cite{1,6,35,36} Four studies were conducted in the United States,\cite{25,30,35,36} one study in Pakistan,\cite{31} one in France,\cite{32} and one in the Netherlands,\cite{33} three studies in the United Kingdom,\cite{27,28,34} and two studies in Iran.\cite{37}

In two papers, the intervention groups were mothers,\cite{36,37} in five papers were the children’s family,\cite{25,27,30,32,34} and in seven papers were the parents,\cite{1,28,29,31,33,35} The follow-up period in four papers was 2 months or less,\cite{27,30,32,37} while this period was observed to be more than 3 months and even more than 2 years in other studies.

Features of the intervention strategies

Among all of the studies, the educational approach was used as the intervention in 11 studies;\cite{1,27,30,35,36} legislative/incentive approach, engineering/technology approaches had not been used in papers; and three studies had used the educational intervention and engineering/technological approaches.\cite{27,29,34} Most of the studies used the educational intervention approaches. The educational approach involved the individual- and group-based training sessions, home visits, questions and answers, group discussions and interviews, speeches, and video. Educational tools such as videos, booklets, and pamphlets were used. In other studies, in addition to educational intervention approach, the engineering/technology approach used involved the provision of safety equipment and the provision of financial facilities to provide the safety equipment.

Of 14 studies, 11 (78.6%) did not explicitly apply a behavioral theory. Health belief model,\cite{6} protection motivation theory (PMT),\cite{37} and the social-ecological model\cite{33} were theoretical frameworks employed. Furthermore, the three studies reported a significant change in results.\cite{36,33,37}

The effect of interventions

Of 11 studies, which were based on the educational approach, 8 reported a significant change in all outcomes, and two interventions were not provided with the significant changes. One study reported the significant changes in some outcomes, but other outcomes did not have significant changes. Of the three interventions, which had a combination of educational and engineering/technological approaches, the significant changes were reported in all outcomes. Similarly, the studies that utilized the behavior change models and theories were successful to achieve desired changes.

The amount of effect size obtained for the model of random effects was 0.446, which was significant at the level of 0.0001. This showed that interventions to the prevention of home injuries among children under 5-year-old were effective. The

![Figure 1: Flow diagram for the identification, screening, eligibility, and inclusion of studies](http://www.archtrauma.com)
Table 1: Characteristics of primary studies included in systematic review

<table>
<thead>
<tr>
<th>Author (year)</th>
<th>Study groups</th>
<th>Intervention (s)</th>
<th>Follow-up and models and intervention theories</th>
<th>Outcomes</th>
<th>Effect size</th>
<th>Study quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clamp and Kendrick (1998)</td>
<td>83 children in the intervention group</td>
<td>Intervention families received the general and specialized safety advice along with low-cost safety equipment. The control group received routine care. The average consultation time for safety advice was 20 min</td>
<td>6 weeks after intervention by telephone or sent by post to those families without a telephone. Without theory or model</td>
<td>Increased the use of safety equipment and other safe practices in intervention group (P<0.05). No significant difference between the intervention and control groups (P>0.05)</td>
<td>0.231</td>
<td>High risk of bias</td>
</tr>
<tr>
<td>Kendrick (1999)</td>
<td>1124 children in the intervention group and 1028 children in the control group</td>
<td>A package of specific advice at routine child health surveillance, consultations, low-cost safety equipment, home safety checks, and first aid training</td>
<td>Follow-up at 6-9, 12-15, and 18-24 months Without theory or model</td>
<td>No significant decrease in injuries between the intervention and control groups (P>0.05)</td>
<td>0.145</td>
<td>High risk of bias</td>
</tr>
<tr>
<td>Gielen et al. (2001)</td>
<td>18 families in the intervention group</td>
<td>1-h seminar about injury prevention for the intervention and control group</td>
<td>Followed up until the child reached the age between 12 and 18 months Without theory or model</td>
<td>No significant changes in knowledge, belief, and home safety behaviors (P>0.05)</td>
<td>0.322</td>
<td>High risk of bias</td>
</tr>
<tr>
<td>Sznajder et al. (2003)</td>
<td>100 families from four towns in two groups</td>
<td>Group 1 received the counseling and a kit including preventive devices and pamphlets about indoor injuries and ways to avoid them. The Group 2 received counseling but not the kit</td>
<td>The first visit was at home when their child reached 6-9 months and the second home visit was done 6-8 weeks later Without a theory or model</td>
<td>Number of safety improvements after the first home visit. Between the first and the second visits, safety improvement was significantly higher in the group with the kit (P<0.05)</td>
<td>0.425</td>
<td>High risk of bias</td>
</tr>
<tr>
<td>Posner et al. (2004)</td>
<td>49 families in the intervention group</td>
<td>Home safety brochure, handout about the prevention of common household injuries to young children, providing the free home safety kit</td>
<td>Follow-up at 6-8 weeks after the intervention Without a theory or model</td>
<td>Significant higher average overall safety score in the intervention group (P<0.05). Significant improvements of injury in the intervention group (P<0.05). Significant improvements in safety devices in the intervention group (P<0.05)</td>
<td>0.397</td>
<td>High risk of bias</td>
</tr>
<tr>
<td>Watson et al. (2005)</td>
<td>1635 families in the intervention group</td>
<td>Training for the intervention group and also a standardized safety consultation and provision of free and fitted stair gates, fireguards, smoke alarms, cupboard locks, and window locks</td>
<td>2 years’ follow-up Without a theory or model</td>
<td>Intervention arm had a significantly higher attendance rate for injuries in primary care (P=0.003). Significant improvements in safety practices in the intervention group (P<0.05)</td>
<td>0.456</td>
<td>High risk of bias</td>
</tr>
<tr>
<td>Babul et al. (2007)</td>
<td>Home visit plus safety kit group, 173 parents</td>
<td>Participants were randomly assigned to one of the three groups: 1. Home visit plus safety kit; 2. Safety kit alone</td>
<td>2 years’ follow-up Without a theory or model</td>
<td>Significant increase in-home visit and the safety kit (P<0.05). Significant increase in the rate of injuries compared with the control group (P<0.05)</td>
<td>0.365</td>
<td>High risk of bias</td>
</tr>
<tr>
<td>Rehmani and LeBlanc (2010)</td>
<td>The interventions included: 170 families in the fall prevention 170 families in the ingestion prevention</td>
<td>Parents in Group 1 received falls safety and prevention counseling only Group 2 received ingestion safety and prevention counseling only</td>
<td>Follow-up in a 3-6 month period after the first home visit Without a theory or model</td>
<td>The percentage of safety houses in which families received counseling intervention was 13.5%, while it was 3.5% in the control group</td>
<td>0.512</td>
<td>Moderate risk of bias</td>
</tr>
</tbody>
</table>

Contd...
largest amount of effect was related to Morrongiello et al.,[1] study and the smallest amount of effect size related to the Kendrick study.[28]

For quality assessment, there were no articles with low risk of bias, four articles had a moderate risk of bias,[1,13,33,36] and ten articles had a high risk of bias.[6,25,27,30,32,34,35,37] [Table 1].

DISCUSSION

Home accidents occurred at home or surrounding environment and are led to the injury. On average, more than 50% of home injuries in children under 5 years of age are created by themselves.[38] Studies showed that the greatest injury burden is related to children in the age range of 0–4 years.[39,40] Accidents are the leading cause of hospitalization in children,[41] and regarding the high prevalence of home injuries in children and since these injuries are predictable and preventable,[41,42] the appropriate information about the causes of injuries and intervention methods to prevent is important.

Injury prevention depends on behaviors and environmental factors, safety devices and tools, training of parents and families, and accepting the injury as a norm.[43-45] The previous study also showed that a key injury prevention is the behaviors and efficacious interventions.[43,45]

In general, the interventions for reducing accidents in children can be divided into two categories: active and passive strategies.[46] When passive interventions are not appropriate, the active intervention is
utilized. Training methods are an active strategy. The training increases people’s knowledge and skills and changes their attitude. Training is an important strategy to reduce the risk of home accidents among children. The most-reported intervention to reduce home injuries was education or training.

Parent safety behaviors may affect injury reduction. Posner et al. showed that safety training at home can lead to the improvement of people’s safety score. Some other studies showed that there is no significant change in accident reduction. The study conducted by Dershewitz and Williamson showed that the educational program was effective in reducing home hazards. Gielen et al. also showed that the educational interventions did not significantly change the knowledge, belief, and home safety behaviors. Ebadi Fardazar et al. also showed that, after education, the mean scores of all structures of PMT in the intervention group were better than those in the control group and also there was a significant difference between the mean scores of all structures of PMT in the intervention group before and after the educational intervention.

Rehmani and Leblanc showed that safety advice is an effective method to improve the safety of the home. In some studies, the passive interventions such as safety kit, safety equipment, safe practices, and home safety checks were used. In general, home safety programs should focus on interventions that are more effective in changing parental behavior to reduce injuries and accidents. Several studies have shown that a home visit is one of the most effective interventions in changing behavior.

Babul et al. showed that the home visit, as a complementary method along with safety training, increases the use of safety devices by parents. He used a home safety kit containing nine items, instructional brochure, and a risk assessment checklist, but none of these interventions was related to the reduction of the injuries reported by parents. Kendrick stated that the home safety checks, safety equipment, and safety advice had no effect on the frequency of home accidents. Watson, despite finding the positive behavioral changes through the home visit, did not report the injury reduction. In a study conducted by Sznajder et al., the safety behavior was significantly better in the parents who received the home visit, safety kit, and counseling. King et al. believe that the successfulness in-home visit program depends on the number of home visits and the child health issues that may affect the safety behaviors. It should be also mentioned that home visit makes it impossible to perform a meta-analysis. In addition, to assess the higher quality evidence of the effectiveness of the intervention, we did not search the grey literature; therefore, a publication bias may exist in this.

CONCLUSION

Based on the available evidence, we observed the possibility of reducing or preventing the risk of home injuries in children, by taking into account the appropriate interventions. Obtained results in this study highlighted that the active interventions or combination of different interventions are most important and effective compared to the passive intervention; practitioners should develop the home accident and injury prevention strategies.

FINANCIAL SUPPORT AND SPONSORSHIP

Nil.

CONFLICTS OF INTEREST

There are no conflicts of interest.

REFERENCES

6. Meimanat Abadi S, Ghofranipour F, Yousef F, Moradpour F. The effect of educational intervention based on health belief model on the
damage caused by accidents among children less than 5 year old of women referred to health centers in Qorveh in 2013, Hakim Jorjani J 2016;14:28-40.

Towner E, Dowswell T, Simpson G, Jarvis S. Health Promotion in Childhood and Young Adolescence for the Prevention of Unintentional Injuries. Health Promotion Effectiveness Reviews; 1996.