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Introduction

Extensive studies have been carried out so far on identifying the 
factors which affect accidents at both micro‑ and macro‑levels 
and also on developing models for predicting the number and 
severity of accidents.[1‑5] The main focus of these studies had 
been identifying and analyzing the effect size of different 
factors on accidents, and based on the obtained results, some 
solutions were proposed, which involved the decrease or 
increase of some factors depending on their roles in accidents. 
For instance, if speeding was considered an effective factor 
that increasing the number of accidents at an intersection, 
some solutions were presented for slowing down the traffic in 

that area. Due to the interaction among the factors affecting 
accidents, focusing on a single factor in providing a solution 
can result in deficiencies such as a decrease of accidents in one 
mode of transport and an increase of the same in another mode. 
Therefore, reaching a practical and appropriate amendatory 
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solution necessitates the inclusion of all influential factors 
across all modes of transport at the same time. On the other 
hand, any change in the road network entails a variation in 
traffic parameters and imposes new costs. Calculating the 
amount of change in traffic parameters, such as the delay and 
speed of vehicles, requires spending a lot of time and money, 
and thus, to come up with an effective scheme, it is of high 
significance to develop a solution that not only increases safety 
but also causes the least amount of change in the road network 
as well. Considering the above‑mentioned points as well as the 
few studies carried out on developing a solution, the present 
work of research aims at providing a development of safety 
improvement method (DSIM) so that the level of safety can 
improve in the area under study. To this end, the following 
steps were considered:

1.	 Developing separate accident frequency prediction 
models for different modes of transport  (vehicle, 
motorcycle, and pedestrian)

2.	 Achieving the DSIM aiming at improving safety in the 
area under study.

Therefore, the next section reviewed the related studies in this 
regard. Then, Section 3 addressed the methods and materials 
of the study. Next, the results obtained from the study were 
presented, and in the end, the conclusion of the study was 
given.

Literature review
The studies on safety have mainly focused on identifying and 
investigating the effect size of diverse factors on accidents 
in different modes of transport. Cai et  al. investigated the 
influence of macro‑level variables at the level of traffic 
analysis zones (TAZs) on pedestrians and cyclists’ accidents 
using dual‑state models. They were also trying to measure the 
influence of the neighboring zones on the accidents of one zone. 
According to their results, some factors such as population 
density, employment rate, and the number of public transport 
users in one TAZ increase the number of accidents. Moreover, 
the influence of adjacent zones on the accidents of one zone 
turned out to be significant, and dual‑state models, especially 
the zero‑inflated negative binomial  (NB) model, showed a 
better performance in comparison to single‑state models.[6]

Since in the DSIM, the accident frequency prediction models 
are taken as input data, it is of high importance to employ proper 
models that show high precision. In this process, finding a 
suitable method of analysis and selecting influential independent 
variables are two factors that affect the development of safety 
models. In the past years, researchers have proposed numerous 
methods such as NB,[7] Poisson log‑normal,[8] zero‑inflation,[9] 
multivariate,[10] finite mixture/latent class,[11] and multilevel[12,13] 
to develop accident prediction models using different variables. 
The details and assessments of crash frequency models are 
presented in review papers.[14,15]

In this study, the independent variables used in the modeling 
procedure come from both micro‑  and macro‑levels. The 
models developed based on the variable at each level have their 

own distinctive performance and applications. The accident 
prediction models are mostly developed using micro‑level 
variables.[16‑18] These studies have helped determine solutions 
for decreasing the number of accidents in different transport 
facilities such as intersections or road segments. On the other 
hand, prediction models using macro‑level variables have been 
developed in recent years. These variables include traffic data 
such as road length with different functional classification in 
a zone[19,20] and trip generation and trip distribution of TAZ,[21] 
environmental conditions such as land use specifications,[22] 
and socioeconomic factors such as household income.[23] The 
results of these researches have led to the consideration of 
safety indices in road network planning.

To reach an accurate and comprehensive safety model, it seems 
necessary to consider suitable variables at both micro‑  and 
macro‑levels simultaneously and develops appropriate models. 
Therefore, in the present study, a separate accident frequency 
prediction model was developed for each mode of transport 
using variables at both micro‑ and macro‑levels. The structure 
of data in this study is multilevel because the macro variables 
are extracted at the TAZ level, and they are the same for 
accidents that have occurred in one TAZ. The data which 
lowerlevel data are nested in the higher level is regarded as 
multilevel data. When accident data are multilevel, using 
multilevel models, which consider the intra‑group correlation 
of accident data, is useful.[24] Detailed explanation on multilevel 
data and the adoption of multilevel models in studies related 
to safety may be found in.[25]

Shi et al. investigated the number of highway accidents using 
multilevel and NB models. In their research, the highway 
was divided into 196 segments based on its geometrical 
specifications. The traffic data used in their study were 
obtained through automatic vehicle identification  (AVI) 
systems installed on the highway. Since the output data of 
AVI systems divided the highway into 43 segments, each AVI 
system represented the data related to some segments. Due to 
the dual‑level structure of the data, a multilevel model was 
used for investigating traffic accidents. Based on the obtained 
results, the multilevel model had a better performance than the 
NB model. Moreover, based on the results, increasing some 
factors such as the speed or the horizontal degree of curvature, 
decrease the number of accidents.[26]

The DSIM is developed using the ideal gas molecular 
movement  (IGMM) algorithm, the objective function, and 
the constraints only after coming up with separate accident 
frequency prediction models for each mode of transport. 
Some of the novel metaheuristic algorithms are the artificial 
bee colony Algorithm,[27] cuckoo optimization algorithm,[28] 
ant lion optimizer,[29] krill herd algorithm,[30,31] earthworm 
optimization algorithm,[32] gravitational search algorithm,[33] 
monarch butterfly optimization algorithm,[34] elephant herding 
optimization algorithm,[35,36] and the grey wolf optimizer 
algorithm.[37] Many successful applications of metaheuristic 
algorithms in engineering optimization problems have been 
reviewed by researchers.[38,39]
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There are a lot of applications for the use of optimization algorithms 
in different sections of transportation.[40‑44] Peñabaena‑Niebles 
et al. have investigated the use of the ant colony algorithm on 
optimizing the timing of traffic signals throughout the day based 
on the fluctuating volume of traffic flow.[45]

Materials and Methods

As stated earlier, the changes in urban road network for 
enhancing the level of safety had mostly been related to a 
limited area and were based on considering factors in isolation, 
disregarding the existing significant interactions among them. 
In this study, all the independent variables were simultaneously 
taken into account in recommending any change.

The DSIM refers to a scheme that not only observes sufficient 
safety criteria but also rates the lowest in criteria such as 
change in traffic parameters or the cost. Accordingly, the 
present study was carried out in two phases. In the first phase, 
separate accident frequency prediction models were developed 
for different modes of transport  (vehicle, motorcycle, and 
pedestrian). In the second phase, using the obtained models, 
an applied method was proposed to improve the safety of 
urban areas.

For developing accident prediction models using micro and 
macro variables, the data related to all accidents over the 
years 2014 and 2015 were collected from the west and the 
southwest main areas of Tehran, Iran. Therefore, in general, 
the data related to 14,903 accidents (9807 vehicle accidents, 
2838 motorcycle accidents, and 2258 pedestrian accidents), 
which had occurred in 96 TAZs, were collected. Tehran, as the 
capital of Iran, has five main areas, which in total comprise 22 
regions. The west and the southwest main areas are composed 
of the regions 9, 10, 17, 18, and 19.

The accident data were obtained through the database available 

in the Tehran Traffic Police Center. Moreover, the traffic data 
were collected through the Tehran Transportation and Traffic 
Organization and based on the results obtained from running 
Tehran traffic model.

After collecting the required data, all information was 
imported to GIS. Then, the objected variables related to each 
accident were obtained after doing the required calculations. 
The macro variables used in this study have been collected 
at the level of TAZs. The use of TAZs is more common than 
other geographical levels (such as census tract and country) 
because zone divisions are more in line with the studies 
related to transport planning models, and their pertinent traffic 
variables  (such as trip generation and trip distribution) are 
more readily accessible. The independent variables used in this 
study are shown in Figure 1, and Table 1 lists their descriptive 
statistics in road segments.

Since in regression models, there is usually a logarithmic 
relation between independent variables and the response 
variable, using the logarithm of independent variables in the 
modeling process makes the interpretation of the results much 
easier. This is also very common in previous studies.[46,47] 
Moreover, this method also decreases the variance among 
variables.[19,48] Due to the mentioned reasons, the present study 
used logarithmic conversion of the variables related to the road 
segment and vehicle kilometer traveled of each road segment.

Macro variables were extracted at the level of TAZs. These 
variables are the same for the accidents which have occurred at 
the road segments available in one zone. Hence, the data were 
categorized into two levels. The first level accommodated the 
micro variables related to each segment, and the second level 
included the macro variables related to TAZs. The hierarchical 
structure of the data using in this study is shown in Figure 2. 
Therefore, the present study adopted a multilevel model. 

Table 1: Descriptive statistics of variables

Variable Definition Vehicle Motorcycle Pedestrian

Minimum Maximum Mean SD Minimum Maximum Mean SD Minimum Maximum Mean SD
Count Count of accident at road 

segment
1.00 277.00 69.14 69.29 1.00 33.00 11.14 8.44 1.00 35.00 9.81 8.70

Pro_
Highway

Proportion of length of 
highway roads in TAZ

0.00 0.51 0.19 0.13 0.00 0.51 0.14 0.13 0.00 0.51 0.13 0.12

Pro_
Arterial1

Proportion of length of 
principal arterial roads in TAZ

0.00 0.33 0.05 0.08 0.00 0.33 0.06 0.09 0.00 0.33 0.05 0.08

Pro_
Arterial2

Proportion of length of minor 
arterial roads in TAZ

0.00 1.00 0.29 0.22 0.00 1.00 0.32 0.24 0.00 1.00 0.34 0.25

Pro_
Collector

Proportion of length of 
collector roads in TAZ

0.00 1.00 0.45 0.18 0.00 1.00 0.45 0.20 0.00 1.00 0.43 0.21

Pro_
Local

Proportion of length of local 
roads in TAZ

0.00 0.36 0.03 0.05 0.00 0.36 0.04 0.07 0.00 0.36 0.04 0.07

Log (S-L) Logarithm of road segment 1.26 3.33 2.59 0.32 1.26 3.33 2.51 0.30 1.26 3.33 2.49 0.28
Log (V-
K)

Logarithm of vehicle kilometer 
traveled per road segment

2.25 7.66 6.32 0.75 2.43 7.61 5.96 0.70 2.41 7.61 5.91 0.71

Int_
density

(Number of intersection in a 
TAZ/area of TAZ)*10,000

0.01 0.58 0.17 0.14 0.01 0.58 0.22 0.14 0.01 0.58 0.22 0.14

SD: Standard deviation, TAZ: Traffic analysis zone
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Furthermore, a NB model was also used for making comparisons 
and investigating the performance of multilevel model.

The general equation for the single‑level model or the 
frequently used simple regression model is as follows:

yi = β0+ β1Xi1 + ei� (1)

In the above equation, the subscript I represents an individual 
respondent and y and x stand for the dependent and independent 
variables, respectively. There are also two fixed parameters (β0 and 
β1) that show the intercept and the slope and a random part (e) 
that makes it possible to have fluctuations around the fixed part. 
The word “random” here means “allowed to vary.”

The micro‑level of the individual is the sole place where this 
equation is specified. For developing a multilevel model, this 
micromodel needs to be respecified through differentiating 
TAZ with the subscript j.

yij = β0 + u0j + (β1 + u1j) X1ij + eij� (2)

The fixed parameters (β0 + u0j) show the intercept and allow for 
differential TAZ intercept to change from one TAZ to another 
around the overall intercept (β0) through the addition of random 
component u0j. The second fixed parameters (β1 + u1j) allow 
for differential slope to change around the overall slope (β1) 
through the addition of random component u1j.

[49]

The best accident model for road segments in each 
mode of transport was chosen based on three criteria, 
namely log‑likelihood, Akaike’s information criterion 
corrected (AICC), and Bayesian information criterion (BIC). 
What follows are the formula for this measure:

2k(k +1)2k ‑ 2LL(fullAIC ) +
n

C =
‑ k ‑1

� (3)

( )BIC = kln n ‑ 2LL(f ull) � (4)

In the above formula, k represents the number of parameters, 
n indicates the number of observations, and LL (full) shows 
the log‑likelihood for the entire model.

Having finalized an accident frequency prediction model for each 
mode of transport (vehicle, motorcycle, and pedestrian), in the 
second phase of the study, the DSIM was developed in MATLAB 
environment according to Figure 3 and through using the objective 
function, the constraints in question, the IGMM optimization 
algorithm, and the accident frequency prediction models.

The procedure for reaching characteristics of road network 
regarding safety at the level in question is an iterative 
procedure in which the different options available in predefined 
restrictions are assessed in each step until the response is finally 
reached by the optimization algorithm.

This study was proposed that, besides increasing safety, factors 
such as traffic parameters and cost should also receive due 
attention. Because estimating the cost of a change depends on 
the time and location, and also, it is too complicated to come 
up with all the traffic parameters resulted from a change, the 
least amount of change in the area under study was considered 
the objective function in the present study. Needless to say, 
when considering this objective, changes in factors such as 
traffic parameters and cost resulted from any other change are 
also considered at a minimum level. The objective function is 
illustrated in Relation 5.

( )
( )

( )
( )

pro ‑ Highway(new) pro ‑ Arterial1(new)Z = ‑1 + ( ‑1) +
pro ‑ Highway pro ‑ Arterial1 

pro ‑ Collector(new) pro ‑ Local(new) ( ‑1) + ( ‑1) +
pro ‑ Collector pro ‑ Local 

Log S‑ L (new) Log V ‑ K (new)
 ( ‑1) + ( ‑1) + 

Log S‑ L Log V ‑ K
int(

 
 
 

‑ density(new) ‑1)
int ‑ density (5)

In this study, three constraints were considered:

The first constraint
The purpose of this study was to provide a method for 
decreasing the number of accidents by a certain amount. 
Hence, during the coding stages, the coefficient α was taken 
as the reduction factor for adjusting the number of accidents. 
Therefore, if Y stands for the total number of accidents in the 
existing situation and Ynew shows the total number of accidents 
after the improvements are made, according to Relation 6, the 
first constraint is as follows:

Ynew = α * Y� (6)

The second constraint
Since factors place different effects on accidents at different 
modes of transport, in this study, for each mode of transport, 
a separate accident frequency prediction model was 
developed;[50] therefore, each independent variable needs to 
have the same amount of change in all accident frequency 
prediction models. For instance, the changes in the “length of 

Figure 1: Micro and macro variables connected with crash frequency 
models

Figure 2: Multilevel structure of the data
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segment” for vehicle accidents should be the same as the one 
for the accidents in the pedestrian mode of transport.

The third constraint
Using this constraint, the minimum and maximum amounts of 
change for each independent variable were determined based 
on three criteria:

1.	 The decreasing or increasing effect of an independent 
variable on the number of accidents in different modes of 
transport

2.	 The minimum and maximum values of that independent 
variable

3.	 The physical and geometrical restrictions applied to the 
amount of change in an independent variable.

The acceptable range of each index was formulated using 
independent variable as shown in Table 2.

Varaee and Ghasemi introduce a new met heuristic optimization 
method based on the IGMM to solve mathematical and engineering 
optimization problems. Ideal gas molecules scatter throughout the 
confined environment quickly.[51] This is embedded in the high 
speed of molecules, collisions between them, and the surrounding 
barriers. In the IGMM algorithm, the initial population of gas 
molecules is randomly generated, and the governing equations 
related to the velocity of gas molecules and collisions between those 
are utilized to accomplish the optimal solutions. A comparison of 
results obtained by IGMM with other optimization algorithms 
shows that the proposed method has a challenging capacity in 
finding the optimal solutions and exhibits significance both in 
terms of the accuracy and reduction on the number of function 
evaluations vital in reaching the global optimum.

Results

As already mentioned, in the first step, NB models and 
multilevel models were used for the accidents occurring in road 
segments within each mode of transport (vehicle, motorcycle, 
pedestrian), and the roles of both micro and macro variables 
were investigated. As it has been shown in Table 3, Based on 
the criteria of model goodness‑of‑fit (log‑Likelihood, AICC, and 
BIC), multilevel models show a better performance for the data 
with multilevel structures because they consider within‑zone 
correlation. Table 4 lists the significant variables (P < 0.05) along 
with the coefficient of each across different modes of transport.

Having come up with a separate accident frequency prediction 
model for each mode of transport, the researchers focused, 
in the second phase of the study, on developing the DSIM in 
MATLAB environment using the IGMM algorithm. To come 
up with numerical results for employing this method, the 
accident reduction factor (α) was considered 0.7 in this study. 
In other words, the numerical results are obtained through 
employing solutions for decreasing the number of accidents 
by 30% in the area under study.

Since the optimization process is an iterative one until the 
optimized scheme is reached, the total number of accidents 

Figure 3: The process of development of the safety improvement method

Table 3: Goodness‑of‑fit measures for different models

Type of model Multilevel NB

Mode of transportation Vehicle Motorcycle Pedestrian Vehicle Motorcycle Pedestrian
Count of accident 9807 2838 2258 9807 2838 2258
AICC 95,123.22 18,409.66 14,495.73 97,078.74 19,279.62 14,859.76
BIC 95,187.92 18,463.16 14,547.15 97,136.25 19,327.17 14,905.5
Log likelihood 47,561.61 9204.83 7247.865 48,539.37 9639.81 7429.88
AICC: Akaike’s information criterion corrected, BIC: Bayesian information criterion, NB: Negative binomial

Table 2: Considered range of indexes

Index Minimum Maximum

Pro Highway(new) 1
Pro Highway
−

−
−

-1 0

Pro Arterial1(new) 1
Pro Arterial1 
−

−
−

-1 0

Pro Collector(new) 1
Pro Collector 
−

−
−

-1 1

Pro Local(new) 1
Pro Local 
−

−
−

0 1

( )
( )

Log S L (new)
1

Log S L
−

−
−

-1 0

( )
( )

Log V K (new)
1

Log V K
−

−
−

-1 0

Int density(new) 1
Int density 
−

−
−

-1 0
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in each iteration of the IGMM algorithm is given in Figure 4. 
The values of independent variables differ in each iteration 
until the final results are reached. Thus, in the initial iterations, 
the number of accidents changes considerably. This shows the 
effort made by the IGMM algorithm for finding the response 
range in the problem’s search space. At the end, the number of 
accidents based on the first constraint displays a 30% reduction.

Figure 5 shows the values of the objective function for each 
iteration of the IGMM algorithm. These values started from 
about 2.1 in the initial iterations of the algorithm and after a 
decreasing trend reached the final value of 0.09. Since the 
objective function is causing the least change in the area under 
study, the solution for increasing safety is reached through 
causing the least change in independent variables.

With the observance of the objective function and the pertinent 
constraints, the final response was reached after 200 iterations 
of the IGMM algorithm. The final results are observable in 
Table 5, according to which the variable of “vehicle kilometer 
traveled per road segment” shows the greatest change, while 
the changes observable in other variables are so little that they 
equal 0 by 4 decimals. The final value of the objective function 
is 0.08825, and the number of accidents shows a 30% reduction.

Conclusions

The results of safety studies are limited to considering 
engineering solutions aiming at decreasing or increasing 
the factors affecting safety. In these studies, solutions are 
determined through considering a single factor influencing 
accidents in isolation without investigating its effect size on 
other related factors. For example, narrowing the road aiming 
at increasing pedestrians’ safety might lead to increasing 
front‑to‑back accidents through causing abrupt vehicle 
brakes. This has limited the effectiveness of such solutions 
or in some cases, which has even rendered then ineffective. 
Therefore, presenting a practical solution necessarily entails 
simultaneous consideration of all factors across different 
modes of transport. On the other hand, each change in the 
road network for increasing safety not only results in changes 
in traffic parameters in the area under study but also entails 
costs. Thus, to come up with a scheme which is considered 
both the economic and the traffic points of view, it is of utmost 

importance to cause the least change in the area under study.

Since, in past studies, little attention was paid to offering 
effective solutions, the present study first developed separate 
accident frequency prediction models for each mode of 
transport  (vehicle, motorcycle, and pedestrian). Then, in 
the second step, the DSIM was provided through using the 
IGMM optimization algorithm, the objective functions, and the 
determined constraints. In this method, the objective function 
is taken as causing the least change in the road network of the 
area under study. Moreover, all the factors affecting safety in 
different modes of transport were simultaneously taken into 
account. Next, to come up with numerical results of DSIM, 
the values obtained for a 30% reduction in accidents were 
presented.

Figure 4: The total number of accidents in each iteration of the ideal gas 
molecular movement algorithm

Figure 5: The values of the objective function in the iterations of the ideal 
gas molecular movement algorithm

Table 4: Results of final models for road segments by 
mode of transportation

Variable Vehicle Motorcycle Pedestrian

Coefficient P Coefficient P Coefficient P
Intercept -2.404 0.00 -1.504 0.00 -0.914 0.01
Pro‑highway 1.511 0.00 0.317 0.02 ‑ ‑
Pro‑arterial1 0.578 0.00 1.686 0.00 0.541 0.02
Pro‑collector -0.228 0.01 0.383 0.00 ‑ ‑
Pro‑local -2.091 0.00 ‑ ‑ -1.954 0.02
Log (S-L) 0.269 0.00 0.496 0.00 0.483 0.00
Log (V-K) 0.859 0.01 0.356 0.01 0.325 0.00
Int‑density 0.366 0.02 0.747 0.00 0.73 0.00

Table 5: The final results of the ideal gas molecular 
movement algorithm

Index Value

( )
( )

Log V K new
Log V K

1
−

−
−

-0.0879

Objective function (Z) 0.08825
Number of accidents in current situation base on safety model 18,179
Number of accidents after corrections base on safety model 12,738
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The data used in this study came from the information available 
from 14,903 accidents that occurred in 2014 and 2015 in 96 
TAZs in Tehran, Iran. The independent variables used in this 
study were collected at both micro‑  and macro‑levels. The 
length of the road segment and the vehicle kilometer traveled 
in each segment were taken as the independent variables at the 
micro‑level. At the macro‑level, the ratio of road length, while 
considering their functional classification (highway, principal 
arterial, minor arterial, collector, and local), to the total length 
of all roads of one zone and the density of intersections in one 
TAZ were taken as the independent variables. The multilevel 
model was used for modeling, and the NB model was also used 
for making comparisons and investigating the performance of 
the multilevel model. The final models were selected based on 
the criteria of model fit, including log‑likelihood, AICC, and 
BIC. Based on the obtained results, the multilevel model has 
a better performance than the NB model because the former 
considers the within‑zone correlation resulted from the same 
macro variables for the accidents occurring in one TAZ.

Based on the results of DSIM, the amount of change in the 
independent variables under study in this work of research 
was little except for the variable of “vehicle kilometer traveled 
per road segment,” which showed a significant change. The 
difference in the final results of DSIM with the results of the 
analysis of the final accident models reveals the necessity of 
creating such methods.

For further research, one can address the use of other 
independent variables affecting safety and also different 
optimization algorithms. Moreover, if possible, one can 
consider new constraints and include traffic parameters in the 
optimization process to directly investigate the effect size of 
safety measures on traffic parameters in the area under study.
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